511 research outputs found
Mapping of functionalized regions on carbon nanotubes by scanning tunneling microscopy
Scanning tunneling microscopy (STM) gives us the opportunity to map the
surface of functionalized carbon nanotubes in an energy resolved manner and
with atomic precision. But this potential is largely untapped, mainly due to
sample stability issues which inhibit reliable measurements. Here we present a
simple and straightforward solution that makes away with this difficulty, by
incorporating the functionalized multiwalled carbon nanotubes (MWCNT) into a
few layer graphene - nanotube composite. This enabled us to measure energy
resolved tunneling conductance maps on the nanotubes, which shed light on the
level of doping, charge transfer between tube and functional groups and the
dependence of defect creation or functionalization on crystallographic
orientation.Comment: Keywords: functionalization, carbon nanotubes, few layer graphene,
STM, CITS, ST
Grafting of adipic anhydride to carbon nanotubes through a Diels-Alder cycloaddition/oxidation cascade reaction
Accepted ManuscriptDifferent reactions have been reported for the successful functionalization of carbon nanotubes (CNT). The Diels-Alder cycloaddition is recognized as a plausible chemical approach, but few reports are known where this strategy has been used. In this study, the functionalization was performed by 1,3-butadiene generated from 3-sulfolene under heating conditions in diglyme. This simple and easily scalable method resulted in functionalized CNT with mass losses of 10 - 23 % by thermogravimetric analysis (nitrogen atmosphere). The functionalization was also supported by acid-base titration, elemental analysis, temperature programmed desorption and X-ray photoelectron spectroscopy. The high content in oxygen detected on the CNT surface was assigned to anhydride formation due to a cascade oxidation of the alkene groups generated in the cycloaddition reaction. The complete evolution of the alkene leads to a grafting density of 4.2 mmol g-1 for the anhydride moiety. Ab-initio calculations in CNT model systems indicate that the Diels-Alder addition of butadiene is a feasible process and that subsequent oxidation reactions may result in the formation of the anhydride moiety. The presence of the anhydride group is a valuable asset for grafting a multitude of complex molecules, namely through the nucleophilic addition of amines.Centro de Química and Instituto de Polímeros e Compósitos of the University of Minho and Fundação para a Ciência e Tecnologia (FCT) through the Portuguese NMR network (RNRMN), the Project F-COMP-01-0124-FEDER-022716 (ref. FCT PEst-C/QUI/UI0686/2011) FEDER-COMPETE, Project PEst-C/CTM/LA0025/2013 (Strategic Project - LA 25-2013-2014) and also Project Scope UID/CEC/00319/2013. TG Castro acknowledges FCT for a doctoral grant (SFRH/BD/79195/2011) RF Araújo for a Post-doc grant (SFRH/BPD/88920/2012) and MMF also acknowledges FCT through the program Ciência 2008. Access to computing resources funded by the Project "Search-ON2: Revitalization of HPC infrastructure of UMinho" (NORTE-07-0162-FEDER-000086) is also gratefully acknowledged
Carbon nanotubes: are they dispersed or dissolved in liquids?
Carbon nanotubes (CNTs) constitute a novel class of nanomaterials with remarkable applications in diverse domains. However, the main intrincsic problem of CNTs is their insolubility or very poor solubility in most of the common solvents. The basic key question here is: are carbon nanotubes dissolved or dispersed in liquids, specifically in water? When analyzing the scientific research articles published in various leading journals, we found that many researchers confused between "dispersion" and "solubilization" and use the terms interchangeably, particularly when stating the interaction of CNTs with liquids. In this article, we address this fundamental issue to give basic insight specifically to the researchers who are working with CNTs as well asgenerally to scientists who deal with nano-related research domains
Phthalocyanine-nanocarbon ensembles: From discrete molecular and supramolecular systems to hybrid nanomaterials
This document is the Accepted Manuscript version of a Published Work that appeared in final form in Accounts of Chemical Research, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/ar5004384Conspectus Phthalocyanines (Pcs) are macrocyclic and aromatic compounds that present unique electronic features such as high molar absorption coefficients, rich redox chemistry, and photoinduced energy/electron transfer abilities that can be modulated as a function of the electronic character of their counterparts in donor-acceptor (D-A) ensembles. In this context, carbon nanostructures such as fullerenes, carbon nanotubes (CNTs), and, more recently, graphene are among the most suitable Pc companions. Pc-C60 ensembles have been for a long time the main actors in this field, due to the commercial availability of C60 and the ell-established synthetic methods for its functionalization. As a result, many Pc-C60 architectures have been prepared, featuring different connectivities (covalent or supramolecular), intermolecular interactions (self-organized or molecularly dispersed species), and Pc HOMO/LUMO levels. All these elements provide a versatile toolbox for tuning the photophysical properties in terms of the type of process (photoinduced energy/electron transfer), the nature of the interactions beteen the electroactive units (through bond or space), and the kinetics of the formation/decay of the photogenerated species. Some recent trends in this field include the preparation of stimuli-responsive multicomponent systems ith tunable photophysical properties and highly ordered nanoarchitectures and surface-supported systems shoing high charge mobilities. A breakthrough in the Pc-nanocarbon field as the appearance of CNTs and graphene, hich opened a ne avenue for the preparation of intriguing photoresponsive hybrid ensembles shoing light-stimulated charge separation. The scarce solubility of these 1-D and 2-D nanocarbons, together ith their loer reactivity ith respect to C60 stemming from their less strained sp2 carbon netorks, has not meant an unsurmountable limitation for the preparation of variety of Pc-based hybrids. These systems, hich sho improved solubility and dispersibility features, bring together the unique electronic transport properties of CNTs and graphene ith the excellent light-harvesting and tunable redox properties of Pcs. A singular and distinctive feature of these Pc-CNT/graphene (single- or fe-layers) hybrid materials is the control of the direction of the photoinduced charge transfer as a result of the band-like electronic structure of these carbon nanoforms and the adjustable electronic levels of Pcs. Moreover, these conjugates present intensified light-harvesting capabilities resulting from the grafting of several chromophores on the same nanocarbon platform.In this Account, recent progress in the construction of covalent and supramolecular Pc-nanocarbon ensembles is summarized, ith a particular emphasis on their photoinduced behavior. e believe that the high degree of control achieved in the preparation of Pc-carbon nanostructures, together ith the increasing knoledge of the factors governing their photophysics, ill allo for the design of next-generation light-fueled electroactive systems. Possible implementation of these Pc-nanocarbons in high performance devices is envisioned, finally turning into reality much of the expectations generated by these materialsFinancial support from the Spanish MICINN (CTQ2011-24187/BQU), the Comunidad de Madrid (S2013/MIT-2841 FOTOCARBON) and the EU (“SO2S” FP7-PEOPLE-2012-ITN, no.: 316975) is acknowledge
Review: The increasing importance of carbon nanotubes and nanostructured conducting polymers in biosensors
The growing need for analytical devices requiring smaller sample volumes, decreased power consumption and improved performance have been driving forces behind the rapid growth in nanomaterials research. Due to their dimensions, nanostructured materials display unique properties not traditionally observed in bulk materials. Characteristics such as increased surface area along with enhanced electrical/optical properties make them suitable for numerous applications such as nanoelectronics, photovoltaics and chemical/biological sensing. In this review we examine the potential that exists to use nanostructured materials for biosensor devices. By incorporating nanomaterials, it is possible to achieve enhanced sensitivity, improved response time and smaller size. Here we report some of the success that has been achieved in this area. Many nanoparticle and nanofibre geometries are particularly relevant, but in this paper we specifically focus on organic nanostructures, reviewing conducting polymer nanostructures and carbon nanotubes
DFT studies of COOH tip-functionalized zigzag and armchair single wall carbon nanotubes
Structure and energy calculations of pristine and COOH-modified model single wall carbon nanotubes (SWCNTs) of different length were performed at B3LYP/6-31G* level of theory. From 1 to 9 COOH groups were added at the end of the nanotube. The differences in structure and energetics of partially and fully functionalized SWCNTs at one end of the nanotube are observed. Up to nine COOH groups could be added at one end of (9,0) zigzag SWCNT in case of full functionalization. However, for (5,5) armchair SWCNT, the full functionalization was impossible due to steric crowding and rim deformation. The dependence of substituent attachment energy on the number of substituents at the carbon nanotube rim was observed
Atomic Layer Deposition of ZnO on Multi-walled Carbon Nanotubes and Its Use for Synthesis of CNT–ZnO Heterostructures
In this article, direct coating of ZnO on PECVD-grown multi-walled carbon nanotubes (MWCNTs) is achieved using atomic layer deposition (ALD). Transmission electron microscopy investigation shows that the deposited ZnO shell is continuous and uniform, in contrast to the previously reported particle morphology. The ZnO layer has a good crystalline quality as indicated by Raman and photoluminescence (PL) measurements. We also show that such ZnO layer can be used as seed layer for subsequent hydrothermal growth of ZnO nanorods, resulting in branched CNT–inorganic hybrid nanostructures. Potentially, this method can also apply to the fabrication of ZnO-based hybrid nanostructures on other carbon nanomaterials
Management of inflammatory bowel disease in the emergency setting: the MIBODI international survey and evidence-based practices
Aim: This study aimed to evaluate the impact of the WSES-AAST guidelines in clinical practice and to investigate the knowledge, attitudes, and practices of emergency surgeons in managing the complications of ulcerative colitis (UC) and Crohn’s disease (CD). Methods: The MIBODI survey is a cross-sectional study among WSES members designed as an international web-based survey, according to the Checklist for Reporting Results of Internet E-Surveys, to collect data on emergency surgeons’ knowledge, attitudes, and practices concerning the management of patients presenting with acute complications of CD and UC. The questionnaire was composed of 30 questions divided into five sections: (1) demographic data, (2) primary evaluation, (3) non-operative management, (4) operative management, and (5) perianal sepsis management. Results: Two hundred and forty-two surgeons from 48 countries agreed to participate in the survey. The response rate was 24.2% (242/1000 members on WSES mail list). Emergency surgeons showed high adherence to recommendations for 6 of the 21 assessed items, with a “correct” response rate greater than or equal to 60%, according to WSES-AAST recommendations. Nine critical issues were highlighted, with correct answers at a rate of less than 50%. Conclusions: Inflammatory bowel disease is a complex disease that requires a multidisciplinary approach with close collaboration between gastroenterologists and surgeons. Emergency surgeons play a crucial role in managing complications related to IBD. One year after publication, the MIBODI study showed significant global implementation of the WSES-AAST guidelines in clinical practice, offering an imperative tool in the improved management of IBD in emergency and urgent settings
In vivo therapeutic silencing of hypoxia-inducible factor 1 alpha (HIF-1α) using single-walled carbon nanotubes noncovalently coated with siRNA
- …
