4,999 research outputs found
Transfer molding of PMR-15 polyimide resin
Transfer molding is an economically viable method of producing small shapes of PMR-15 polyimide. It is shown that with regard to flexural, compressive, and tribological properties transfer-molded PMR-15 polyimide is essentially equivalent to PMR-15 polyimide produced by the more common method of compression molding. Minor variations in anisotropy are predictable effects of molding design and secondary finishing operations
Advanced thermal barrier coating systems
Current state-of-the-art thermal barrier coating (TBC) systems consist of partially stabilized zirconia coatings plasma sprayed over a MCrAlY bond coat. Although these systems have excellent thermal shock properties, they have shown themselves to be deficient for a number of diesel and aircraft applications. Two ternary ceramic plasma coatings are discussed with respect to their possible use in TBC systems. Zirconia-ceria-yttria (ZCY) coatings were developed with low thermal conductivities, good thermal shock resistance and improved resistance to vanadium containing environments, when compared to the baseline yttria stabilized zirconia (YSZ) coatings. In addition, dense zirconia-titania-yttria (ZTY) coatings were developed with particle erosion resistance exceeding conventional stabilized zirconia coatings. Both coatings were evaluated in conjunction with a NiCr-Al-Co-Y2O3 bond coat. Also, multilayer or hybrid coatings consisting of the bond coat with subsequent coatings of zirconia-ceria-yttria and zirconia-titania-yttria were evaluated. These coatings combine the enhanced performance characteristics of ZCY with the improved erosion resistance of ZTY coatings. Improvement in the erosion resistance of the TBC system should result in a more consistent delta T gradient during service. Economically, this may also translate into increased component life simply because the coating lasts longer
Improving the Impact of Market Reform on Agricultural Productivity in Africa: How Institutional Design Makes a Difference
Improving the Impact of Market Reform on Agricultural Productivity in Africa: How Institutional Design Makes a Difference Abstract: This paper reviews the emerging empirical record of agricultural marketing policy reform and agricultural productivity, drawing from research on food access and agricultural productivity supported by USAID’s Africa Bureau on seven countries in West, Eastern, and Southern Africa. We also examine key factors constraining past and future performance of the food systems in these countries. The paper concludes by identifying a set of policy issues for further consideration that would help provide the investment incentives to promote productivity growth for the millions of low-input semi-subsistence rural households in the region.food security, food policy, market reform, Agricultural and Food Policy, Marketing, Productivity Analysis, Downloads June 2008 - July 2009: 40, Q13,
Base heating methodology improvements, volume 1
This document is the final report for NASA MSFC Contract NAS8-38141. The contracted effort had the broad objective of improving the launch vehicles ascent base heating methodology to improve and simplify the determination of that environment for Advanced Launch System (ALS) concepts. It was pursued as an Advanced Development Plan (ADP) for the Joint DoD/NASA ALS program office with project management assigned to NASA/MSFC. The original study was to be completed in 26 months beginning Sep. 1989. Because of several program changes and emphasis on evolving launch vehicle concepts, the period of performance was extended to the current completion date of Nov. 1992. A computer code incorporating the methodology improvements into a quick prediction tool was developed and is operational for basic configuration and propulsion concepts. The code and its users guide are also provided as part of the contract documentation. Background information describing the specific objectives, limitations, and goals of the contract is summarized. A brief chronology of the ALS/NLS program history is also presented to provide the reader with an overview of the many variables influencing the development of the code over the past three years
The Apparent Political and Administrative Expediency Exception Established by the Supreme Court in the United States Supreme Court in United States v. Humberto Alvarez-Machain to the Rule of Law as Reflected by Recognized Principles of International Law
Unscreened water-diversion pipes pose an entrainment risk to the threatened green sturgeon, Acipenser medirostris.
Over 3,300 unscreened agricultural water diversion pipes line the levees and riverbanks of the Sacramento River (California) watershed, where the threatened Southern Distinct Population Segment of green sturgeon, Acipenser medirostris, spawn. The number of sturgeon drawn into (entrained) and killed by these pipes is greatly unknown. We examined avoidance behaviors and entrainment susceptibility of juvenile green sturgeon (35±0.6 cm mean fork length) to entrainment in a large (>500-kl) outdoor flume with a 0.46-m-diameter water-diversion pipe. Fish entrainment was generally high (range: 26-61%), likely due to a lack of avoidance behavior prior to entering inescapable inflow conditions. We estimated that up to 52% of green sturgeon could be entrained after passing within 1.5 m of an active water-diversion pipe three times. These data suggest that green sturgeon are vulnerable to unscreened water-diversion pipes, and that additional research is needed to determine the potential impacts of entrainment mortality on declining sturgeon populations. Data under various hydraulic conditions also suggest that entrainment-related mortality could be decreased by extracting water at lower diversion rates over longer periods of time, balancing agricultural needs with green sturgeon conservation
Immersive, interactive, web-enabled computer simulation as a trigger for learning: The Next Generation of Problem-based Learning in Educational Leadership
Abstract from ERIC: This paper describes the use of advanced computer technology in an innovative educational leadership program. This program integrates full-motion video scenarios that simulate the leadership challenges typically faced by principals over the course of a full school year. These scenarios require decisions that are then coupled to consequences and scored in the background to create a profile of learner strengths and needs. Because the content has been filmed in an operating school and because of the unique choice-consequence sequences, the immersive and interactive simulation triggers more potent learning than is possible with either previous paper-and-pencil or discussion-based techniques. The scenarios are embedded in a Web-enabled framework that facilitates the provision of individualized feedback tailored to the specific choices made by the learner, and supports the collection of multiple metrics that relate to the performance of the learner and the learning framework itself. Project Authentic Learning for Leaders (ALL) demonstrates the future of teaching and learning in either hybrid (face-to-face instruction plus digital teaching and learning) or in individual anywhere, anytime learning. (Contains 5 figures.
Integrated spatial multiplexing of heralded single photon sources
The non-deterministic nature of photon sources is a key limitation for single
photon quantum processors. Spatial multiplexing overcomes this by enhancing the
heralded single photon yield without enhancing the output noise. Here the
intrinsic statistical limit of an individual source is surpassed by spatially
multiplexing two monolithic silicon correlated photon pair sources,
demonstrating a 62.4% increase in the heralded single photon output without an
increase in unwanted multi-pair generation. We further demonstrate the
scalability of this scheme by multiplexing photons generated in two waveguides
pumped via an integrated coupler with a 63.1% increase in the heralded photon
rate. This demonstration paves the way for a scalable architecture for
multiplexing many photon sources in a compact integrated platform and achieving
efficient two photon interference, required at the core of optical quantum
computing and quantum communication protocols.Comment: 10 pages, 3 figures, comments welcom
The Source of Three-minute Magneto-acoustic Oscillations in Coronal Fans
We use images of high spatial, spectral and temporal resolution, obtained
using both ground- and space-based instrumentation, to investigate the coupling
between wave phenomena observed at numerous heights in the solar atmosphere.
Intensity oscillations of 3 minutes are observed to encompass photospheric
umbral dot structures, with power at least three orders-of-magnitude higher
than the surrounding umbra. Simultaneous chromospheric velocity and intensity
time series reveal an 87 \pm 8 degree out-of-phase behavior, implying the
presence of standing modes created as a result of partial wave reflection at
the transition region boundary. An average blue-shifted Doppler velocity of
~1.5 km/s, in addition to a time lag between photospheric and chromospheric
oscillatory phenomena, confirms the presence of upwardly-propagating slow-mode
waves in the lower solar atmosphere. Propagating oscillations in EUV intensity
are detected in simultaneous coronal fan structures, with a periodicity of 172
\pm 17 s and a propagation velocity of 45 \pm 7 km/s. Numerical simulations
reveal that the damping of the magneto-acoustic wave trains is dominated by
thermal conduction. The coronal fans are seen to anchor into the photosphere in
locations where large-amplitude umbral dot oscillations manifest. Derived
kinetic temperature and emission measure time-series display prominent
out-of-phase characteristics, and when combined with the previously established
sub-sonic wave speeds, we conclude that the observed EUV waves are the coronal
counterparts of the upwardly-propagating magneto-acoustic slow-modes detected
in the lower solar atmosphere. Thus, for the first time, we reveal how the
propagation of 3 minute magneto-acoustic waves in solar coronal structures is a
direct result of amplitude enhancements occurring in photospheric umbral dots.Comment: Accepted into ApJ (13 pages and 10 figures
- …
