278 research outputs found

    Antimalarial activity of cupredoxins: the interaction of Plasmodium Merozoite Surface Protein 119 (MSP119) and Rusticyanin

    Get PDF
    Background: The interaction of MSP119 with the cupredoxin azurin inhibits the growth of Plasmodium falciparum in red blood cells. Results: Rusticyanin forms a well-defined complex with MSP119 upon binding at the same surface area than inhibitory antibodies. Conclusion: Rusticyanin becomes an excellent therapeutic agent for malaria. Significance: Knowing the rusticyanin- MSP119 interface will allow the design of novel anti-malarial drugsJunta de Andalucía P08-CVI-3876, BIO198Ministerio de Economía y Competitividad SAF2011- 26611Fundación Séneca de la Región de Murcia 15354/PI/10Ministerio de Ciencia e Innovación BFU2010-19451Medical Research Council U117574558, U11753206

    Problem-based learning in dental education: what's the evidence for and against... and is it worth the effort?

    Get PDF
    The document attached has been archived with permission from the Australian Dental Association. An external link to the publisher’s copy is included.All Australian dental schools have introduced problem-based learning (PBL) approaches to their programmes over the past decade, although the nature of the innovations has varied from school to school. Before one can ask whether PBL is better than the conventional style of education, one needs to consider three key issues. Firstly, we need to agree on what is meant by the term PBL; secondly, we need to decide what “better” means when comparing educational approaches; and thirdly, we must look carefully at how PBL is implemented in given situations. It is argued that PBL fulfils, at least in theory, some important principles relating to the development of new knowledge. It also represents a change in focus from teachers and teaching in conventional programmes to learners and learning. Generally, students enjoy PBL programmes more than conventional programmes and feel they are more nurturing. There is also some evidence of an improvement in clinical and diagnostic reasoning ability associated with PBL curricula. The main negative points raised about PBL are the costs involved and mixed reports of insufficient grounding of students in the basic sciences. Financial restraints will probably preclude the introduction of pure or fully integrated PBL programmes in Australian dental schools. However, our research and experience, as well as other published literature, indicate that well-planned hybrid PBL programmes, with matching methods of assessment, can foster development of the types of knowledge, skills and attributes that oral health professionals will need in the future.T Winning and G Townsen

    Protein phosphatase beta, a putative type-2A protein phosphatase from the human malaria parasite Plasmodium falciparum.

    Get PDF
    Protein phosphatases play a critical role in the regulation of the eukaryotic cell cycle and signal transduction. A putative protein serine/threonine phosphatase gene has been isolated from the human malaria parasite Plasmodium falciparum. The gene has an unusual intron that contains four repeats of 32 nucleotides and displays a high degree of size polymorphism among different strains of P. falciparum. The open reading frame reconstituted by removal of the intron encodes a protein of 466 amino acids with a predicted molecular mass of approximately 53.7 kDa. The encoded protein, termed protein phosphatase beta (PP-beta), is composed of two distinct domains. The C-terminal domain comprises 315 amino acids and exhibits a striking similarity to the catalytic subunits of the type-2A protein phosphatases. Database searches revealed that the catalytic domain has the highest similarity to Schizosaccharomyces pombe Ppa1 (58% identity and 73% similarity). However, it contains a hydrophilic insert consisting of five amino acids. The N-terminal domain comprises 151 amino acid residues and exhibits several striking features, including high levels of charged amino acids and asparagine, and multiple consensus phosphorylation sites for a number of protein kinases. An overall structural comparison of PP-beta with other members of the protein phosphatase 2A group revealed that PP-beta is more closely related to Saccharomyces cerevisiae PPH22. Southern blots of genomic DNA digests and chromosomal separations showed that PP-beta is a single-copy gene and is located on chromosome 9. A 2800-nucleotide transcript of this gene is expressed specifically in the sexual erythrocytic stage (gametocytes). The results indicate that PP-beta may be involved in sexual stage development

    Validation of N-myristoyltransferase as an antimalarial drug target using an integrated chemical biology approach

    Get PDF
    Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase

    Design and Synthesis of High Affinity Inhibitors of Plasmodium falciparum and Plasmodium vivax N-Myristoyltransferases Directed by Ligand Efficiency Dependent Lipophilicity (LELP)

    Get PDF
    N-Myristoyltransferase (NMT) is an essential eukaryotic enzyme and an attractive drug target in parasitic infections such as malaria. We have previously reported that 2-(3-(piperidin-4-yloxy)benzo[b]thiophen-2-yl)-5-((1,3,5-trimethyl-1H-pyrazol-4-yl)methyl)-1,3,4-oxadiazole (34c) is a high affinity inhibitor of both Plasmodium falciparum and P. vivax NMT and displays activity in vivo against a rodent malaria model. Here we describe the discovery of 34c through optimization of a previously described series. Development, guided by targeting a ligand efficiency dependent lipophilicity (LELP) score of less than 10, yielded a 100-fold increase in enzyme affinity and a 100-fold drop in lipophilicity with the addition of only two heavy atoms. 34c was found to be equipotent on chloroquine-sensitive and -resistant cell lines and on both blood and liver stage forms of the parasite. These data further validate NMT as an exciting drug target in malaria and support 34c as an attractive tool for further optimization

    High systemic IL-6 is associated with worse prognosis in patients with non-small cell lung cancer

    Get PDF
    Characteristic cytokine patterns have been described in different cancer patients and they are related to their diagnosis, prognosis, prediction of treatment responses and survival. A panel of cytokines was evaluated in the plasma of non-small cell lung cancer (NSCLC) patients and healthy controls to investigate their profile and relationship with clinical characteristics and overall survival. The case-controlled cross-sectional study design recruited 77 patients with confirmed diagnosis of NSCLC (cases) and 91 healthy subjects (controls) aimed to examine peripheral pro-inflammatory and anti-inflammatory cytokines (IL-2, IL-4, IL-6, IL-10, IL-17A, TNF and IFN-gamma) by Cytometry Beads Arrays (CBA Flex) in. The cytokine IL-6 showed a statistically significant difference among groups with increased expression in the case group (p < 0.001). The correlation between the cytokines expression with patient's clinical characteristics variables revealed the cytokine IL-6 was found to be associated with gender, showing higher levels in male (p = 0.036), whereas IL-17A levels were associated with TNM stage, being higher in III-IV stages (p = 0.044). We observed worse overall survival for individuals with high levels of IL-6 when compared to those with low levels of this cytokine in 6, 12 and 24 months. Further studies of IL-6 levels in independent cohort could clarify the real role of IL-6 as an independent marker of prognostic of NSCLC.Conselho Nacional de Desenvolvimento Científico e Tencnológico (CNPq) [Grant number 401775/2012-7 to ALF]; Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) [Grant number 2014/ 23414-8 to EMS]info:eu-repo/semantics/publishedVersio

    Glycobiology of cell death: when glycans and lectins govern cell fate

    Get PDF
    Although one typically thinks of carbohydrates as associated with cell growth and viability, glycosylation also has an integral role in many processes leading to cell death. Glycans, either alone or complexed with glycan-binding proteins, can deliver intracellular signals or control extracellular processes that promote initiation, execution and resolution of cell death programs. Herein, we review the role of glycans and glycan-binding proteins as essential components of the cell death machinery during physiologic and pathologic settings.Fil: Lichtenstein, Rachel. Ben-Gurion University of the Negev. Faculty of Engineering. Department of Biotechnology Engineering; IsraelFil: Rabinovich, Gabriel Adrian. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Cs.exactas y Naturales. Departamento de Quimica Biologica; Argentin

    Increased Systemic Th17 Cytokines Are Associated with Diastolic Dysfunction in Children and Adolescents with Diabetic Ketoacidosis

    Get PDF
    Diastolic dysfunction suggestive of diabetic cardiomyopathy is established in children with T1DM, but its pathogenesis is not well understood. We studied the relationships of systemic inflammatory cytokines/chemokines and cardiac function in 17 children with T1DM during and after correction of diabetic ketoacidosis (DKA). Twenty seven of the 39 measured cytokines/chemokines were elevated at 6–12 hours into treatment of DKA compared to values after DKA resolution. Eight patients displayed at least one parameter of diastolic abnormality (DA) during acute DKA. Significant associations were present between nine of the cytokine/chemokine levels and the DA over time. Interestingly, four of these nine interactive cytokines (GM-CSF, G-CSF, IL-12p40, IL-17) are associated with a Th17 mediated cell response. Both the DA and CCL7 and IL-12p40, had independent associations with African American patients. Thus, we report occurrence of a systemic inflammatory response and the presence of cardiac diastolic dysfunction in a subset of young T1DM patients during acute DKA

    Biophysical Characteristics of Lipid-Induced Aβ Oligomers Correlate to Distinctive Phenotypes In Transgenic Mice

    Get PDF
    Alzheimer\u27s disease (AD) is a progressive neurodegenerative disorder that affects cognition and memory. Recent advances have helped identify many clinical sub-types in AD. Mounting evidence point toward structural polymorphism among fibrillar aggregates of amyloid-β (Aβ) to being responsible for the phenotypes and clinical manifestations. In the emerging paradigm of polymorphism and prion-like propagation of aggregates in AD, the role of low molecular weight soluble oligomers, which are long known to be the primary toxic agents, in effecting phenotypes remains inconspicuous. In this study, we present the characterization of three soluble oligomers of Aβ42, namely 14LPOs, 16LPOs, and GM1Os with discreet biophysical and biochemical properties generated using lysophosphatidyl glycerols and GM1 gangliosides. The results indicate that the oligomers share some biophysical similarities but display distinctive differences with GM1Os. Unlike the other two, GM1Os were observed to be complexed with the lipid upon isolation. It also differs mainly in detection by conformation-sensitive dyes and conformation-specific antibodies, temperature and enzymatic stability, and in the ability to propagate morphologically-distinct fibrils. GM1Os also show distinguishable biochemical behavior with pronounced neuronal toxicity. Furthermore, all the oligomers induce cerebral amyloid angiopathy (CAA) and plaque burden in transgenic AD mice, which seems to be a consistent feature among all lipid-derived oligomers, but 16LPOs and GM1Os displayed significantly higher effect than the others. These results establish a correlation between molecular features of Aβ42 oligomers and their distinguishable effects in transgenic AD mice attuned by lipid characteristics, and therefore help bridge the knowledge gap in understanding how oligomer conformers could elicit AD phenotypes
    corecore