5,406 research outputs found
Chemical abundances and properties of the ionized gas in NGC 1705
We obtained [O III] narrow-band imaging and multi-slit MXU spectroscopy of
the blue compact dwarf (BCD) galaxy NGC 1705 with FORS2@VLT to derive chemical
abundances of PNe and H II regions and, more in general, to characterize the
properties of the ionized gas. The auroral [O III]\lambda4363 line was detected
in all but one of the eleven analyzed regions, allowing for a direct estimate
of their electron temperature. The only object for which the [O III]\lambda4363
line was not detected is a possible low-ionization PN, the only one detected in
our data. For all the other regions, we derived the abundances of Nitrogen,
Oxygen, Neon, Sulfur and Argon out to ~ 1 kpc from the galaxy center. We detect
for the first time in NGC 1705 a negative radial gradient in the oxygen
metallicity of -0.24 \pm 0.08 dex kpc^{-1}. The element abundances are all
consistent with values reported in the literature for other samples of dwarf
irregular and blue compact dwarf galaxies. However, the average (central)
oxygen abundance, 12 + log(O/H)=7.96 \pm 0.04, is ~0.26 dex lower than previous
literature estimates for NGC 1705 based on the [O III]\lambda4363 line. From
classical emission-line diagnostic diagrams, we exclude a major contribution
from shock excitation. On the other hand, the radial behavior of the emission
line ratios is consistent with the progressive dilution of radiation with
increasing distance from the center of NGC 1705. This suggests that the
strongest starburst located within the central 150 pc is responsible for
the ionization of the gas out to at least 1 kpc. The gradual dilution of
the radiation with increasing distance from the center reflects the gradual and
continuous transition from the highly ionized H II regions in the proximity of
the major starburst into the diffuse ionized gas.Comment: Accepted for publication on A
Wolf-Rayet nebulae as tracers of stellar ionizing fluxes: I. M1-67
We use WR124 (WN8h) and its associated nebula M1-67, to test theoretical
non-LTE models for Wolf-Rayet (WR) stars. Lyman continuum ionizing flux
distributions derived from a stellar analysis of WR124, are compared with
nebular properties via photo-ionization modelling. Our study demonstrates the
significant role that line blanketing plays in affecting the Lyman ionizing
energy distribution of WR stars, of particular relevance to the study of HII
regions containing young stellar populations.
We confirm previous results that non-line blanketed WR energy distributions
fail to explain the observed nebular properties of M1-67, such that the
predicted ionizing spectrum is too hard. A line blanketed analysis of WR124 is
carried out using the method of Hillier & Miller (1998), with stellar
properties in accord with previous results, except that the inclusion of
clumping in the stellar wind reduces its wind performance factor to only
approx2. The ionizing spectrum of the line blanketed model is much softer than
for a comparable temperature unblanketed case, such that negligible flux is
emitted with energy above the HeI 504 edge. Photo-ionization modelling,
incorporating the observed radial density distribution for M1-67 reveals
excellent agreement with the observed nebular electron temperature, ionization
balance and line strengths. An alternative stellar model of WR124 is
calculated, following the technique of de Koter et al. (1997), augmented to
include line blanketing following Schmutz et al. (1991). Good consistency is
reached regarding the stellar properties of WR124, but agreement with the
nebular properties of M1-67 is somewhat poorer than for the Hillier & Miller
code.Comment: 12 pages, 5 figures, latex2e style file, Astronomy & Astrophysics
(accepted
Collapse of a semiflexible polymer in poor solvent
We investigate the dynamics and the pathways of the collapse of a single,
semiflexible polymer in a poor solvent via 3-D Brownian Dynamics simulations.
Earlier work indicates that the condensation of semiflexible polymers
generically proceeds via a cascade through metastable racquet-shaped,
long-lived intermediates towards the stable torus state. We investigate the
rate of decay of uncollapsed states, analyze the preferential pathways of
condensation, and describe likelihood and lifespan of the different metastable
states. The simulation are performed with a bead-stiff spring model with
excluded volume interaction and exponentially decaying attractive potential.
The semiflexible chain collapse is studied as functions of the three relevant
length scales of the phenomenon, i.e., the total chain length , the
persistence length and the condensation length , where is a measure of the attractive potential per unit
length. Two dimensionless ratios, and , suffice to describe
the decay rate of uncollapsed states, which appears to scale as . The condensation sequence is described in terms of the time series
of the well separated energy levels associated with each metastable collapsed
state. The collapsed states are described quantitatively through the spatial
correlation of tangent vectors along the chain. We also compare the results
obtained with a locally inextensible bead-rod chain and with a phantom
bead-spring model. Finally, we show preliminary results on the effects of
steady shear flow on the kinetics of collapse.Comment: 9 pages, 8 figure
PPAK Wide-field Integral Field Spectroscopy of NGC 628: I. The largest spectroscopic mosaic on a single galaxy
We present a wide-field IFS survey on the nearby face-on Sbc galaxy NGC 628,
comprising 11094 individual spectra, covering a nearly circular field-of-view
of ~6 arcmin in diameter, with a sampling of ~2.7 arcsec per spectrum in the
optical wavelength range (3700--7000 AA). This galaxy is part of the PPAK IFS
Nearby Galaxies Survey, (PINGS, Rosales-Ortega et al. 2009). To our knowledge,
this is the widest spectroscopic survey ever made in a single nearby galaxy. A
detailed flux calibration was applied, granting a spectrophotometric accuracy
of \,0.2 mag.
The age of the stellar populations shows a negative gradient from the inner
(older) to the outer (younger) regions. We found an inversion of this gradient
in the central ~1 kpc region, where a somewhat younger stellar population is
present within a ring at this radius. This structure is associated with a
circumnuclear star-forming region at ~ 500 pc, also found in similar spiral
galaxies. From the study of the integrated and spatially resolved ionized gas
we found a moderate SFR of ~ 2.4 Msun yr. The oxygen abundance shows a a
clear gradient of higher metallicity values from the inner part to the outer
part of the galaxy, with a mean value of 12~+~log(O/H) ~ 8.7. At some specific
regions of the galaxy, the spatially resolved distribution of the physical
properties show some level of structure, suggesting real point-to-point
variations within an individual \hh region. Our results are consistent with an
inside-out growth scheme, with stronger star formation at the outer regions,
and with evolved stellar populations in the inner ones.Comment: 31 pages, 22 Figuras, Accepted for Publishing in MNRAS (corrected
PDF
A close look into an intermediate redshift galaxy using STIS
We present a detailed view of a galaxy at z=0.4 which is part of a large
database of intermediate redshifts using high resolution images. We used the
STIS parallel images and spectra to identify the object and obtain the
redshift. The high resolution STIS image (0.05'') enabled us to analyse the
internal structures of this galaxy. A bar along the major axis and hot-spots of
star formation separated by 0.37'' (1.6 kpc) are found along the inner region
of the galaxy. The analysis of the morphology of faint galaxies like this one
is an important step towards estimating the epoch of formation of the Hubble
classification sequence.Comment: Astronomy and Astrophysics Letter - accepte
Reanalysis of the FEROS observations of HIP 11952
Aims. We reanalyze FEROS observations of the star HIP 11952 to reassess the
existence of the proposed planetary system. Methods. The radial velocity of the
spectra were measured by cross-correlating the observed spectrum with a
synthetic template. We also analyzed a large dataset of FEROS and HARPS
archival data of the calibrator HD 10700 spanning over more than five years. We
compared the barycentric velocities computed by the FEROS and HARPS pipelines.
Results. The barycentric correction of the FEROS-DRS pipeline was found to be
inaccurate and to introduce an artificial one-year period with a semi-amplitude
of 62 m/s. Thus the reanalysis of the FEROS data does not support the existence
of planets around HIP 11952.Comment: 7 pages, 8 figures, 1 tabl
Novel deletions causing pseudoxanthoma elasticum underscore the genomic instability of the ABCC6 region
Mutations in ABCC6 cause pseudoxanthoma elasticum (PXE), a heritable disease that affects elastic fibers. Thus far, >200 mutations have been characterized by various PCR-based techniques (primarily direct sequencing), identifying up to 90% of PXE-causing alleles. This study wanted to assess the importance of deletions and insertions in the ABCC6 genomic region, which is known to have a high recombinational potential. To detect ABCC6 deletions/insertions, which can be missed by direct sequencing, multiplex ligation-dependent probe amplification (MLPA) was applied in PXE patients with an incomplete genotype. MLPA was performed in 35 PXE patients with at least one unidentified mutant allele after exonic sequencing and exclusion of the recurrent exon 23-29 deletion. Six multi-exon deletions and four single-exon deletions were detected. Using MLPA in addition to sequencing, we expanded the ABCC6 mutation spectrum with 9 novel deletions and characterized 25% of unidentified disease alleles. Our results further illustrate the instability of the ABCC6 genomic region and stress the importance of screening for deletions in the molecular diagnosis of PXE. Journal of Human Genetics (2010) 55, 112-117; doi: 10.1038/jhg.2009.132; published online 15 January 201
And the winner is: galaxy mass
The environment is known to affect the formation and evolution of galaxies
considerably best visible through the well-known morphology-density
relationship. We study the effect of environment on the evolution of early-type
galaxies for a sample of 3,360 galaxies morphologically selected by visual
inspection from the SDSS in the redshift range 0.05<z<0.06, and analyse
luminosity-weighted age, metallicity, and alpha/Fe ratio as function of
environment and galaxy mass. We find that on average 10 per cent of early-type
galaxies are rejuvenated through minor recent star formation. This fraction
increases with both decreasing galaxy mass and decreasing environmental
density. However, the bulk of the population obeys a well-defined scaling of
age, metallicity, and alpha/Fe ratio with galaxy mass that is independent of
environment. Our results contribute to the growing evidence in the recent
literature that galaxy mass is the major driver of galaxy formation. Even the
morphology-density relationship may actually be mass-driven, as the consequence
of an environment dependent characteristic galaxy mass coupled with the fact
that late-type galaxy morphologies are more prevalent in low-mass galaxies.Comment: 5 pages, proceedings of JENAM 2010, Symposium 2: "Environment and the
formation of galaxies: 30 years later
- …
