1,757 research outputs found
Waveform simulator Patent
Sign wave generation simulator for variable amplitude, frequency, damping, and phase pulses for oscilloscope displa
Experimental investigation of the fundamental modes of a collisionless plasma Final report, 10 Mar. 1964 - 31 Oct. 1967
Propagation of electron cyclotron waves and effects of low frequency noise in collisionless plasm
The origin of very wide binary systems
The majority of stars in the Galactic field and halo are part of binary or
multiple systems. A significant fraction of these systems have orbital
separations in excess of thousands of astronomical units, and systems wider
than a parsec have been identified in the Galactic halo. These binary systems
cannot have formed through the 'normal' star-formation process, nor by capture
processes in the Galactic field. We propose that these wide systems were formed
during the dissolution phase of young star clusters. We test this hypothesis
using N-body simulations of evolving star clusters and find wide binary
fractions of 1-30%, depending on initial conditions. Moreover, given that most
stars form as part of a binary system, our theory predicts that a large
fraction of the known wide 'binaries' are, in fact, multiple systems.Comment: 4 pages, 1 figure, to appear in the proceedings of IAU Symposium 266,
eds. R. de Grijs & J.R.D. Lepin
Is our Sun a Singleton?
Most stars are formed in a cluster or association, where the number density
of stars can be high. This means that a large fraction of initially-single
stars will undergo close encounters with other stars and/or exchange into
binaries. We describe how such close encounters and exchange encounters can
affect the properties of a planetary system around a single star. We define a
singleton as a single star which has never suffered close encounters with other
stars or spent time within a binary system. It may be that planetary systems
similar to our own solar system can only survive around singletons. Close
encounters or the presence of a stellar companion will perturb the planetary
system, often leaving planets on tighter and more eccentric orbits. Thus
planetary systems which initially resembled our own solar system may later more
closely resemble some of the observed exoplanet systems.Comment: 2 pages, 1 figure. To be published in the proceedings of IAUS246
"Dynamical Evolution of Dense Stellar Systems". Editors: E. Vesperini (Chief
Editor), M. Giersz, A. Sill
Mas-related G-protein–coupled receptors inhibit pathological pain in mice
An important objective of pain research is to identify novel drug targets for the treatment of pathological persistent pain states, such as inflammatory and neuropathic pain. Mas-related G-protein–coupled receptors (Mrgprs) represent a large family of orphan receptors specifically expressed in small-diameter nociceptive primary sensory neurons. To determine the roles of Mrgprs in persistent pathological pain states, we exploited a mouse line in which a chromosomal locus spanning 12 Mrgpr genes was deleted (KO). Initial studies indicated that these KO mice show prolonged mechanical- and thermal-pain hypersensitivity after hind-paw inflammation compared with wild-type littermates. Here, we show that this mutation also enhances the windup response of dorsal-horn wide dynamic-range neurons, an electrophysiological model for the triggering of central pain sensitization. Deletion of the Mrgpr cluster also blocked the analgesic effect of intrathecally applied bovine adrenal medulla peptide 8–22 (BAM 8–22), an MrgprC11 agonist, on both inflammatory heat hyperalgesia and neuropathic mechanical allodynia. Spinal application of bovine adrenal medulla peptide 8–22 also significantly attenuated windup in wild-type mice, an effect eliminated in KO mice. These data suggest that members of the Mrgpr family, in particular MrgprC11, may constitute an endogenous inhibitory mechanism for regulating persistent pain in mice. Agonists for these receptors may, therefore, represent a class of antihyperalgesics for treating persistent pain with minimal side effects because of the highly specific expression of their targets
A Method to Polarize Stored Antiprotons to a High Degree
Polarized antiprotons can be produced in a storage ring by spin--dependent
interaction in a purely electron--polarized hydrogen gas target. The polarizing
process is based on spin transfer from the polarized electrons of the target
atoms to the orbiting antiprotons. After spin filtering for about two beam
lifetimes at energies MeV using a dedicated large acceptance
ring, the antiproton beam polarization would reach . Polarized
antiprotons would open new and unique research opportunities for spin--physics
experiments in interactions
Long-time discrete particle effects versus kinetic theory in the self-consistent single-wave model
The influence of the finite number N of particles coupled to a monochromatic
wave in a collisionless plasma is investigated. For growth as well as damping
of the wave, discrete particle numerical simulations show an N-dependent long
time behavior resulting from the dynamics of individual particles. This
behavior differs from the one due to the numerical errors incurred by Vlasov
approaches. Trapping oscillations are crucial to long time dynamics, as the
wave oscillations are controlled by the particle distribution inhomogeneities
and the pulsating separatrix crossings drive the relaxation towards thermal
equilibrium.Comment: 11 pages incl. 13 figs. Phys. Rev. E, in pres
- …
