1,757 research outputs found

    Waveform simulator Patent

    Get PDF
    Sign wave generation simulator for variable amplitude, frequency, damping, and phase pulses for oscilloscope displa

    Experimental investigation of the fundamental modes of a collisionless plasma Final report, 10 Mar. 1964 - 31 Oct. 1967

    Get PDF
    Propagation of electron cyclotron waves and effects of low frequency noise in collisionless plasm

    The origin of very wide binary systems

    Get PDF
    The majority of stars in the Galactic field and halo are part of binary or multiple systems. A significant fraction of these systems have orbital separations in excess of thousands of astronomical units, and systems wider than a parsec have been identified in the Galactic halo. These binary systems cannot have formed through the 'normal' star-formation process, nor by capture processes in the Galactic field. We propose that these wide systems were formed during the dissolution phase of young star clusters. We test this hypothesis using N-body simulations of evolving star clusters and find wide binary fractions of 1-30%, depending on initial conditions. Moreover, given that most stars form as part of a binary system, our theory predicts that a large fraction of the known wide 'binaries' are, in fact, multiple systems.Comment: 4 pages, 1 figure, to appear in the proceedings of IAU Symposium 266, eds. R. de Grijs & J.R.D. Lepin

    Is our Sun a Singleton?

    Full text link
    Most stars are formed in a cluster or association, where the number density of stars can be high. This means that a large fraction of initially-single stars will undergo close encounters with other stars and/or exchange into binaries. We describe how such close encounters and exchange encounters can affect the properties of a planetary system around a single star. We define a singleton as a single star which has never suffered close encounters with other stars or spent time within a binary system. It may be that planetary systems similar to our own solar system can only survive around singletons. Close encounters or the presence of a stellar companion will perturb the planetary system, often leaving planets on tighter and more eccentric orbits. Thus planetary systems which initially resembled our own solar system may later more closely resemble some of the observed exoplanet systems.Comment: 2 pages, 1 figure. To be published in the proceedings of IAUS246 "Dynamical Evolution of Dense Stellar Systems". Editors: E. Vesperini (Chief Editor), M. Giersz, A. Sill

    Mas-related G-protein–coupled receptors inhibit pathological pain in mice

    Get PDF
    An important objective of pain research is to identify novel drug targets for the treatment of pathological persistent pain states, such as inflammatory and neuropathic pain. Mas-related G-protein–coupled receptors (Mrgprs) represent a large family of orphan receptors specifically expressed in small-diameter nociceptive primary sensory neurons. To determine the roles of Mrgprs in persistent pathological pain states, we exploited a mouse line in which a chromosomal locus spanning 12 Mrgpr genes was deleted (KO). Initial studies indicated that these KO mice show prolonged mechanical- and thermal-pain hypersensitivity after hind-paw inflammation compared with wild-type littermates. Here, we show that this mutation also enhances the windup response of dorsal-horn wide dynamic-range neurons, an electrophysiological model for the triggering of central pain sensitization. Deletion of the Mrgpr cluster also blocked the analgesic effect of intrathecally applied bovine adrenal medulla peptide 8–22 (BAM 8–22), an MrgprC11 agonist, on both inflammatory heat hyperalgesia and neuropathic mechanical allodynia. Spinal application of bovine adrenal medulla peptide 8–22 also significantly attenuated windup in wild-type mice, an effect eliminated in KO mice. These data suggest that members of the Mrgpr family, in particular MrgprC11, may constitute an endogenous inhibitory mechanism for regulating persistent pain in mice. Agonists for these receptors may, therefore, represent a class of antihyperalgesics for treating persistent pain with minimal side effects because of the highly specific expression of their targets

    A Method to Polarize Stored Antiprotons to a High Degree

    Get PDF
    Polarized antiprotons can be produced in a storage ring by spin--dependent interaction in a purely electron--polarized hydrogen gas target. The polarizing process is based on spin transfer from the polarized electrons of the target atoms to the orbiting antiprotons. After spin filtering for about two beam lifetimes at energies T40170T\approx 40-170 MeV using a dedicated large acceptance ring, the antiproton beam polarization would reach P=0.20.4P=0.2-0.4. Polarized antiprotons would open new and unique research opportunities for spin--physics experiments in pˉp\bar{p}p interactions

    Long-time discrete particle effects versus kinetic theory in the self-consistent single-wave model

    Get PDF
    The influence of the finite number N of particles coupled to a monochromatic wave in a collisionless plasma is investigated. For growth as well as damping of the wave, discrete particle numerical simulations show an N-dependent long time behavior resulting from the dynamics of individual particles. This behavior differs from the one due to the numerical errors incurred by Vlasov approaches. Trapping oscillations are crucial to long time dynamics, as the wave oscillations are controlled by the particle distribution inhomogeneities and the pulsating separatrix crossings drive the relaxation towards thermal equilibrium.Comment: 11 pages incl. 13 figs. Phys. Rev. E, in pres
    corecore