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Gulf General Atomic Principal Investigator for the contract is Dr. John H.

Malmberg, and its project number is 407.



ABSTRACT

This report summarizesresults of a three year program of experimental

and theoretical research to investigate propagation of electron cyclotron

waves in a collisionless plasma and to investigate the origin and effects
of low frequency noise in the plasma. The theoretical work concentrates

on the application of the linear theory of plasma waves to geometries en-

countered experimental]y, where the size is finite, and the density is a

function of position. A perturbation method is derived for predicting the
Landau damping (or growth) of electron cyclotron waves in terms of the

electron velocity distribution function and the potential and density pro-

files. The dispersion, damping,and beaminduced growth of the waves have

been measured as a function of the plasma parameters and the plasma boundary
conditions. The results are comparedto theory. An electronic device for

analyzing composite interferograms composedof two or more dampedsine waves
is described. Measurementson the origin and effects of low frequency noise

in the plasma (10-3OOkc) are presented. Methods are given for reducing

the low frequency noise which result in a simultaneous order-of-magnitude
reduction in anomalousdiffusion of the plasma.
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I

INTRODUCTION

This report summarizes research at Gulf General Atomic, Incorporated

sponsored by the National Aeronautics and Space Administration

(Contract NAS7-275), conducted from i0 March 1964 through 31 October 1967,

on the fundamental modes of collisionless plasma. The general objectives

of this research program, which was part of the plasma turbulence project

at Gulf General Atomic, were to systematically develop the theory of plasma

turbulence and to provide a series of detailed experimental checks of the

theory. This tested theory would provide a firm foundation for predicting

the behavior of plasmas in more complex situations, and especially for

predicting the anomalously large transport coefficients associated with

plasma turbulence which are encountered in actual plasmas. Significant

theoretical and experimental results to this end have been obtained from

the research.

The detailed objectives of the NASA program are succinctly summarized

by combining the statement of work from the contract authorizing the pro-

gram and the statements from modifications authorizing its extension:

i. Measurement of the dispersion relations of plasma waves

near the electron cyclotron frequency;

2. Measurement of the spatial damping of these waves;

3. Measurement of the coupling of these waves to an

electron beam;

4. Measurement of the effects on the waves as the plasma

properties are systematically varied;

5. Experimental investigation of the "low frequency"

dynamics of the plasma used for the wave experiments;

6. Development of theoretical dispersion relations for

plasma waves in nonuniform plasmas_ and

7. Comparing the results of 1-5 with theory.
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Despite the inevitable shifts in emphasis on various aspects of the

program that occurred as our knowledge increased, comparison of the spe-
cific accomplishments listed in the results with the statement of work

guiding the research indicates that most of the particular calculations

and measurementsattempted were successful. The appendices to this report

consist of the principal scientific papers arising from the research.

These papers present in detail the advances in our understanding of plasma

dynamicsresulting from this project.

The contents of the papers are summarizedbriefly in Section II. This
summarygives an overall view of the research and emphasizes essential

results. It is intended that it provide orientation for a study of the

scientific papers. In Section II and the appendices, research on noise and

diffusion is presented first, the theory of waves second, and experiments
on waveslast. This ordering is chosen for clarity of exposition. All the

papers given in the appendices except one describe work supported wholly or
in part by the NASAprogram. The exception, Appendix IV, describes theo-

retical work which was undertaken to explain someof the NASAexperimental

results but supported by a related program. It is included as a convenience

to the reader, since this theory is essential for understanding part of the
experimental results and since the theory has not yet been published.
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II

SUMMARYOFRESULTS

2.1 Rotation, Diffusion and Noise

In almost every experimental case, plasmas diffuse at a rate that is

much too large to be explained by binary collision processes. This "anoma-

lous diffusion" determines the characteristics of plasma devices in many

cases. It is known that anomalous diffusion is caused by fluctuating elec-

tric fields (often associated with instabilities), but the effect is not

understood in detail. Anomalous diffusion is observed in the Gulf General

Atomic Plasma Turbulence machine, and asymmetric plasma rotation is also

observed. In similar experiments, the asymmetric rotation has been associ-

ated with a theoretically predicted instability caused by the presence of

neutral particles and has been considered to be the cause of the anomalous

diffusion.

In the present work, probe studies demonstrated that the plasma rotates

asymmetrically in the E x B direction with frequency in the range 30 to

50 kHz. The frequency and direction are consistent with the radial elec-

tric field produced by the plasma potential and the longitudinal magnetic

field due to the main coils. By rearranging the bias voltages on the duo-

plasmatron anode, it was possible to turn off the rotation. When the mean

radial electric field is reduced to zero, the rotation stops and the low

frequency noise in probe signals is greatly reduced. However, the diffusion

of the plasma is unchanged.

We have also observed that the probe signals caused by the asymmetric

rotation of the plasma are of smaller amplitude or absent if the neutral

background pressure is made sufficiently smal_ even with an anode bias

which would normally allow the rotation. When the background pressure is

increased rotation becomes more pronounced. This result is expected from

the three fluid theor_ which relies on a difference between the drag on

the ions and the drag on the electrons caused by a third fluid, the neutral

particles, to generate the instability leading to the asymmetry in the

rotation.
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Most of the anomalous diffusion may be eliminated by modifying the

magnetic field of the machine. When a cusp magnetic field is interposed

between the source and the main part of the machine and properly adjusted,

there is a spectacular reduction in the radial diffusion of the plasma, as

indicated by a nearly constant plasma density along the central axis. The

broadband noise observed by a downstream probe in the i0 to 50 kc range

also decreases by about an order of magnitude when the cusp is properly

adjusted. The onset of both effects is rather abrupt and occurs approxi-

mately as the central field of the cusp goes through zero. The hypothesis

which best explains the experimental results assumes that the 0.12 mm

diameter plasma-emitting surface at the anode of the duoplasmation is sub-

ject to noisy modulation. Magnetic lines through different parts of the

surface have different potentials, which persist down the whole length of

the machine, lons passing near the center of the plasma experience a large,

noisy electric field due to potential differences between different magnetic

field lines, and are thus diffused radially. When the cusp is turned on,

most of the magnetic lines passing through the source intersect the stain-

less steel cylinder bounding the plasma, and electrons on these lines cannot

get past the cusp. Thus, most of the electrons in the downstream plasma

come from a small area of the source and large potential fluctuations do

not appear between adjacent magnetic lines, lons pass through the cusp

non-adiabatically and so are not much affected, except that those having a

large gyroradius strike the wall and are lost. This hypothesis agrees both

qualitatively and quantitatively with all our present observations. Thus,

we now have a rather complete understanding of the anomalous diffusion

mechanism in this case. We also have a method for greatly reducing the

diffusion.

These experimental results and their theoretical explanation are de-

scribed in detail in Appendix I. The abstract of a paper given at a meeting

of the Plasma Physics Division of the American Physical Society on this

subject is reproduced in Appendix II.

4



2.2 Plasma Waves: Theory

The theory of electrostatic waves in a cold, collisionless, uniform

plasma has been known for a long time. These waves have also been studied

for the case of a column of cold plasma of uniform density with finite

radius. To apply the theory to our experiments, it was necessary that it

be redeveloped for a hot plasma column of nonuniform density. In addition,

we need the theory for the case when an electron beam with a radially de-

pendent velocity is injected into the plasma.

The geometry to be considered is a long column of plasma bounded in

the radial direction by a good conductor. The plasma is immersed in a

uniform finite magnetic field parallel to the axis of the plasma column.

The plasma density is a function of radius, but its temperature is not.

One approach is to calculate the Landau damping (or growth) by a per-

turbation procedure in terms of the plasma velocity distribution function

and potential and density profiles. For a zero-temperature plasma, no

Landau damping or growth occurs. When a finite spread (finite temperature)

is introduced in the velocity distribution of the electrons, the eigen-

frequencies become complex; however, if the spread in the distribution is

small, 7, the imaginary part of the wave frequency, will be small and the

shape of the potential eigenmodes of the system as functions of transverse

coordinates will not be greatly altered. The effect of wave-particle reso-

nance is to cause the zero-temperature eigenmodes to grow or decay slowly

in time as a whole, without changing otherwise. The rate of decay or growth

depends on the slope of the velocity distribution function at the velocities

where resonance can take place, weighted by the electrostatic energy as a

function of transverse displacement and averaged over the density profile

of the plasma. The average is quite insensitive to the exact shape of the

transverse profile, and the resulting formula for 7 is not qualitatively

different from that obtained for infinite homogeneous plasmas. It can be

applied to predict the growth or decay of plasma waves in an electron

plasma confined by a magnetic field, provided that the density and potential

profiles, shape of the electron velocity distribution and dependence of the

real part of the wave frequency on kll are known.



For a thermal plasma 7 is negative and damping occurs. If an elec-

tron beam is injected into the plasma with radially dependent velocity

determined by the transverse variation in potential, the averaging process

described above smears it into a "gentle bump" on the tail of the Maxwellian,

so that waves with the proper phase velocity experience slow growth, just

as in the idealized gentle bump problem with an infinite homogeneous plasma.

This theory is given in detail in Appendix III.

The variational approach of Appendix III provides only the damping or

growth of the waves, not their dispersion. It also approximates the radial

density profile. For these reasons, we decided to make a computer code to

integrate the dispersion relation directly. This is done as follows. We

specify the properties of the plasma by the dielectric tensor relating the

displacement to the electric field (_ = _ _). For waves having phase

velocity small compared to the velocity of light, V x E may be neglected

and the electric field calculated from a scalar potential, Y. When the

plasma is regarded as a dielectric, there are no free charges and

: _-- --o (i)

The frequency is sufficiently high that the motion of ions may be ignored.

The electron gyroradius is assumed small compared to (i/n) (dn/dr),

where n is the electron density, so the dielectric tensor is a local

quantity. Since n is a function of radial position, E is also. In

addition, _ is a function of the wave frequency and the magnetic field.

A suitable solution for Y is

y = _(r)ei(kz + m@) , (2)

where k is the complex wave number describing the wave.

Substituting (2) into (i) yields

3r--_+ r _r (rErr) _-_ + -mr _r J _ - + k2 ErrJ _ - O,

6
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where Ezz , Err, and Ere are components of the dielectric tensor.

The eigenfunction _ must satisfy the boundary conditions, _ equals

zero at the conducting wall, _ equals some given finite normalization

factor at the origin and 8_/8r = O at the origin. In general, _ is

complex. The complex eigenvalues, k : k + ik, computed for a series of
r

real frequencies _, give the dispersion and Landau damping of the waves.

We have made a computer program to integrate Eq. (3) numerically,

subject to the given boundary conditions, for the experimentally observed

radial electron-density distribution. For the lower-branch wave (near the

plasma frequency), the real part of the parallel dielectric constant, Ezz,

goes through zero at some radius for some of the frequencies of interest.

However, this does not make the equation singular, and so there are no

difficulties in integration. The dispersion and damping of the lower-branch

wave are accurately predicted by this calculation. For the upper-branch

wave (near the electron cyclotron frequency), the real part of the per-

pendicular component of the dielectric tensor, Err , goes through zero

for some of the frequencies of interest. Since E is the coefficient
rr

of the highest order derivative, Eq. (3) is almost singular in this case.

(Only a small imaginary part of E keeps it from being actually singular.)
rr

This gives rise to difficulties in the computer code, because of numerical

errors near this radius. These numerical problems could be overcome by

treating the problem analytically near the singularity and having the com-

puter join this analytic form to the numerical solution. However, these

numerical difficulties are the symptoms of a much more serious disease.

They indicate that the eigenfunction is changing very rapidly in space near

the singularity. But the assumption has been made in deriving the funda-

mental equations that the electron Larmor radius is small compared to the

spatial changes of the eigenfunction. Thus, it is not clear that the code is

correct in principle. To answer this question, the theory must be derived

to one higher order. We have done this calculation.

For the case in which the density varies in a direction orthogonal to

the uniform magnetic field,it becomes necessary to solve a differential

equation which is characterized by the vanishing of the coefficient of the

second derivative of the perturbed potential at a frequency near the local

upper hybrid frequency. Since the differential equation is obtained (in the
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small Larmor radius limit) from a convergent expansion of an integral equa-

tion it is now necessary to go to higher order in the derivatives of the per-

turbed potential. In general, such an analysis leads to a fourth order dif-

ferential equation in which the coefficient of the fourth derivative is down

by the Larmor radius squared; however, due to the accidental cancellation in

the second derivative, the higher order term can no longer be neglected.

In the present calculation we incorporate the effect of wavelengths

parallel to the magnetic field. We concern ourselves with two different

regimes. In one, the plasma is Maxwellian and Landau damping is introduced.

In the other, a beam with a velocity parallel to the ambient magnetic field

is superimposed upon a Maxwellian plasma and instability occurs.

The theory for the spatially inhomogeneous Maxwellian plasma predicts

the presence of a mode whose frequency increases with increasing parallel

wavenumber for the least damped mode in agreement with the experiment. The

frequency drops with increasing parallel wavenumber in the homogeneous

infinite medium limit. The theory also predicts an unstable beam mode for

frequencies above and below the upper hybrid frequency, whereas the infinite

medium solution beam mode is unstable only for frequencies below the upper

hybrid frequency. In general, theory and experiment are in qualitative

agreement for both the stable and unstable modes of operation.

Our method of solution is a WKBJ analysis of the fourth order differ-

ential equation. Since it turns out that the eigenmode is exponentially

small outside the turning point of the fourth order equation, but well with-

in the plasma, the analysis leads to reliable values of the eigenvalue but

not of the eigenfunction. The answer occurs as an integral from the origin

to the turning point of a modified phase equal to (n + ½)_. The details

of this calculation are given in Appendix IV.

The WKBJ analysis provides a convincing explanation of the features

of the data but does not have sufficient precision to make an accurate

quantitative comparison. The fourth order equation would have to be inte-

grated numerically to obtain such a comparison. This has not been done.

2.3 Plasma Waves: Experimental

The dispersion and damping of the waves near the electron cyclotron

frequency have been measured, and their interaction with an electron beam

8



injected into the plasma has been observed. The measurements have been

made for a variety of plasma parameters.

In a first series of measurements, at least three (and perhaps more)

distinct waves having resonances (wave number becoming large) or cutoffs

near the electron cyclotron frequency have been catalogued. Two waves lie

above the cyclotron frequency. One has a high phase velocity, (v_ _ c),

and is a forward wave. The other is a "slow wave," having a phase that

retards with frequency, i.e., a backward wave. The fast wave apparently

is an electromagnetic waveguide mode, perturbed by the plasma. The slow

wave apparently is the CO1 cyclotron wave having a propagation cutoff at
i

the upper hybrid frequency, fuh = (_b + _p)_.

Below the cyclotron frequency there appear to be several waves. The

fastest of these, fairly certainly_ is a plasma perturbed TEmn waveguide

mode, mentioned above. Its dispersion curve matches that for a TEll mode

in a waveguide whose cross-section is i/i0 filled with plasma. The dis-

persion for this wave is very similar to that for a whistler.

The other "cyclotron waves" are strong waves, having only moderate

damping. One of them, having a cutoff frequency between 200 and 300 Mc,

seems to be a wave pair, with a frequency-separation depending on density.

We have measured effects of various plasma densities and cyclotron fre-

quencies on the cyclotron family of waves. The resonances and cutoffs of

the waves move in the expected manner as the plasma and cyclotron frequencies

are adjusted. This series of experiments is described in Appendix V. The

abstract of a paper on this work given at a American Physical Society meet-

ing is reproduced in Appendix VI.

We have also used a variety of radial boundary conditions for the

plasma. This introduced an unexpected complication. In the first series

of experiments, the conducting boundary was a cylindrical pipe i0 cm in

diameter with two longitudinal slots almost full length for manipulating

the probes. The slots coupled into a large diameter (_ 60 cm) stainless

steel vacuum chamber containing essentially no absorbing material. In

addition, the chamber was not very uniforu_ since various mechanical struc-

tures (e.g., probe manipulators) protruded into the machine. In this case

various waves were observed, including the backward electron cyclotron

wave for which we were searching. The appearance of more than one wave

9



at a given frequency greatly complicated the measurements_as did the

appearance of electromagnetic cavity resonances of the machine. Thus_for

a second series of measurements one slot was closed and the main chamber

lined with wave absorbing material. This change completely removed the

high phase velocity wave previously observed above the cyclotron frequency,

but the cyclotron wave also changed character. It became much more heavily

damped and appeared to break up into a number of different modes. The wave

damping also gives evidence of a complicated mode structure. For a third

series of measurements, we went all the way and closed the slot in the tube

surrounding the plasma with an electrical contactor which opens as the

probe approaches and closes behind it. We also provided coaxial shielding

of the probes to within one millimeter of their tip. With this geometry

the dispersion of the backward wave was no longer measurable, but a well-

defined forward wave associated with the electron cyclotron frequency

appeared. The dispersion of the forward wave has been measured as a

function of plasma parameters, and its interaction with an electron beam

has been studied. The experimental data on this forward wave are very

clear and unambiguous - just as good as the lower branch data.

We believe the explanation of these changes in wave character as the

boundary condition is modified is associated with the fact that the singu-

larity in the second order dispersion equation makes it difficult for the

plasma wave to find an eigenmode of the system which matches the boundary

condition at the wall and still behaves properly at the singularity. Thus_

as the boundary is made more symmetric, the eigenmodes are strongly affected.

The lower branch waves, which do not have this singularity, are hardly

changed at all by the changes in boundary condition. It is not possible

to be sure of this explanation without extensive further experimentation

and numerical integration of the fourth order eigenvalue equation. However_

the fourth order WKBJ theory provides a qualitative explanation of the

observed dispersion of the forward wave and of its interaction with an elec-

tron beam injected into the plasma. Detailed experimental data on the

cyclotron waves for various boundary conditions are given in Appendix VII.

As has already been mentioned_ the theory is presented in Appendix IV.

For much of the electron cyclotron wave data_ the output of the

interferometer is a curve which is the sum of two or more damped sine waves_

i0



and the curve must be reduced to its componentparts to be accurately

interpreted. The interferometer circuitry converts the signals to a curve
l(z) vs z, where z is the position in the plasma and l(z) is of the
form

l(z) : E Ai exp(-_i z)sin(kiz+_i ). (4)
i

The problem is to extract the amplitudes, Ai, damping constants, _i'

wave numbers, ki, and phases, _i' from the composite curve. Wehave
developed an analogue system for doing this analysis. The instrument

generates a series of dampedsine wavesof variable amplitude, frequency,

damping constant, and phase. These waveforms are added to obtain a wave-

form which matches the original data. The componentwavefor_s are then

analyzed one at a time. This system is described in Appendi× VIII.
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Rotation, Diffusion, and Noise of a Column of Plasma

J. H. Malmberg

Gulf General Atomic,lncorporated
P. O. Box 608

San Diego, California 92112

I. INTRODUCTION

In almost every experimental case, plasmas diffuse at a rate that is

much too large to be explained by binary collision processes. This "anoma-

lous diffusion" determines the characteristics of plasma devices in many

cases. It is known that anomalous diffusion is caused by fluctuating elec-

tric fields (often associated with instabilities), but the effect is not

understood in detail. Anomalous diffusion is observed in the Gulf General

Atomic, lncorporated, Plasma Turbulence machine, and asymmetric plasma rota-

tion is also observed. In similar experiments I, the asyrmmetric rotation

has been associated with a theoretically predicted instability caused by

the presence of neutral particles 2 and has been considered to be the cause

of the anomalous diffusion. The present experiments establish that the

asymmetry vanishes when the neutral particles are removed, that the dif-

fusion is not altered when the rotation is removed, that the diffusion may

be eliminated by modifying the magnetic field, and that the most probable

explanation of the diffusion is that it has a subtle connection with source

noise. Thus, a reasonably detailed picture of the diffusion process emerges

in this case.

15
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In Section II of this paper the characteristics of the machine are

described. Data on plasma rotation and a method for suppressing it are

given in Section III. Section IV presents data on the effects that mod-

ification of the magnetic field geometry has on diffusion and noise in the

plasma, and proposes a theoretical explanation of the results.

16



II. MACHINE DESCRIPTION

A schematic diagram of the machine which produces the plasma 3 is given

in Fig. i. The plasma is produced in a duoplasmatron arc source and drifts

from it into a long, uniform magnetic field of a few hundred gauss. Since

the duoplasmatron has a magnetic field of approximately 3 kG at its

orifice, there is a strong magnetic mirror at the source end of the machine.

At the other end, the ions are attracted to the negatively charged end plate

and die, but the electrons are reflected by the electrostatic field and

return to the magnetic mirror. Some electrons are contained at one end by

a magnetic mirror and at the other end by an electrostatic field. The ions

are not contained; they simply flow through the machine, providing a back-

ground of positive charge. The entire machine is steady state. The sup-

pressor grid is held 25 V negative with respect to the end plate to pre-

vent the secondary electrons, which are due to ions striking the end plate,

from being injected into the plasma.

The density of ions and electrons in the plasma must be approximately

equal, both in the main part of the machine and in the collision-dominated

orifice of the duoplasmatron. The ions acquire a much larger Larmor radius

than the electrons at the point of injection, and some electrons are con-

tained while the ions are not. Both effects tend to increase the relative

electron density. To maintain quasineutrality, the center of the plasma

charges negatively with respect to the duoplasmatron anode by roughly 3 kT e.

When the duoplasmatron anode is grounded, the center of the plasma is thus

17
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about 3 kT e negative with respect to the grounded stainless steel cylin-

der bounding the plasma, and a radial electric field of a few volts per

centimeter is established.

Since the i mm diam. orifice of the duoplasmatron is collision-

dominated, the center of the plasma is very well connected electrically to

the anode. The spatial potential along the axis remains almost constant

with respect to the duoplasmatron anode as the end plate potential is varied

over a wide (negative) range and as the anode potential is varied with

respect to the grounded stainless steel cylinder which bounds the plasma

radially.

The difference between the duoplasmatron anode potential and the spatial

potential at the center of the plasma provides an electric field which ex-

tracts ions from the source and injects them through the magnetic mirror

into the plasma. The dimensions of the mirror region are not large com-

pared with the Larmor radius and the electric field is not exactly parallel

to the magnetic field. Thus, the injection is nonadiabatic; some ions

acquire substantial perpendicular energy in their transit through the

mirror. The spatial distribution of plasma density is not determined by

the magnetic transformation between the duoplasmatron orifice and the main

part of the machine; rather, it is determined by the distribution of ion

Larmor radii.

For a given gas in the arc (usually _), the plasma temperature is

determined almost entirely by the relationship of pressure in the duo-

plasmatron to arc current. At a fixed current, the temperature rises as

the pressure is reduced, at first very slowly and then rapidly, until a

point is reached at which the arc goes out. Temperatures range from 5 to

20 eV. The radial distribution of plasma density is influenced by the

19



adjustments of the machine, especially by the magnitude of the magnetic

field. The central density is typically 108 - 109 electrons/cm 3. In the

pressure range where the temperature is not very sensitive to arc current,

the density of the plasma is almost directly proportional to arc current.

The density is also a function of longitudinal position, since the ions

diffuse radially as they drift down the machine. This diffusion process

is much too fast to be the result of two-body collisions. Typically the

central density decreases by a factor of two from one end of the machine to

the other.

The machine is pumped by two lO-inch diameter oil diffusion pumps with

liquid-nitrogen-cooled baffles to remove neutrals escaping from the source

and neutralized ions which have hit the end plate. The background pressure

is typically 1.6 x 10 -5 torr (mostly hydrogen). The electron mean free

path for electron-ion collisions is of the order of iO00 m and for electron-

neutral collisions is about 40 m. Debye length is typically i mm, and

the number of particles in a Debye sphere is about 106 .

2O



III. ROTATIONEXPERIMENTS

The stability of a long axisymmetric column of plasma immersedin a

longitudinal magnetic field has been the subject of extensive theoretical 2

and experimental I research. This geometry has been widely used for plasma-

wave experiments, studies of plasma diffusion, and the investigation of

various instabilities. If the plasma is weakly ionized and carries a suf-

ficient longitudinal current, it is, abovea certain critical magnetic

field, suLject to the "screw-instability" which has been explained theo-

retically and observed experimentally. Large, very regular, periodic

variations in plasma density at a fixed radius and azimuth are often

observed (with probes) even in experiments having negligible longitudinal

current. Analysis of the probe measurementsshowsthat the column of plasma

is rotating and is not symmetric about the _zis of rotation. The rotation

is generally associated with the existence of a radial electric field. The

asymmetry is normally explained in terms of someplasma instability ex-

pected in a symmetric geometry.

The measurementsare best explained by assuming the system is in some

"dynamically stable" state of rotation. This state is presumably the non-

linear limit of someinstability which maybe computedfrom the linearized

theory. The particular instability predicted in this case by Simon and by

Hoh2 is due to a differential drag on the ions and electrons caused by

collisions with neutral particles. Someauthors believe this behavior

causes the anomalousdiffusion usually observed in such systems; others

do not believe that a coherent rotation can cause diffusion.
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Themotion of the plasma is deduced from Langmuir probe measurements.

First, we discuss measurementstaken with the duoplasmatron anode grounded.

The fluctuating componentof the saturation ion current as a function of

time to a glass-covered 0.02 rmn diameter tungsten wire with 1 zm ex-

posed at the end is given in Fig. 2 (top trace). Such traces exhibit re-

markable coherence and amplitude stability, leading to the interpretation

that the motion is "dynamically stable." Such a result cannot be the tur-

bulent end product of randomnoise growing to a high level. The phase of

the signal from a fixed probe was comparedwith the phase on a second probe

as the latter was movedlongitudinally the full length of the machine

(1.8 m). Within the experimental accuracy (+ i0 deg) there is no phase

shift. Thus, the asymmetry is not a corkscrew but a straight flute. Com-

parison of phases between the fixed probe signal and from a probe which

may be rotated 360 deg in azimuth (inserted from the end of the machine)

showsthat the repetition pattern observed on the oscilloscope corresponds

to one complete (360 deg) rotation of the plasma. The direction of rota-

tion is given by _ × _, where B is the longitudinal magnetic field and

E is the inwardly directed radial electric field.

The anode of the duoplasmatron maybe biased with respect to ground

without changing arc current or voltage. As the anodevoltage is increased,

the spatial potential in the plasma along the axis changes from a value of

approximately 3 kTe negative to zero and then to a positive value. As

this change is madethe plasma rotation slows, stops, and then begins again

in the opposite direction. This effect is shownin Fig. 2. The nonrotating

state is obtained whenthe axial potential is approximately zero with re-

spect to the grounded wall.
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Fig° 2--Probe current, showing column rotation, at various bias voltages
on the duoplasmatron anode. DC component, _ 50 _A; ACcom-
ponent, 5 _A/cm. Time scale, 50 _sec/dm
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The spatial potential as a function of radius may be understood quali-

tatively by considering the processes that keep the plasma "quasi-neutral."

As has been explained previously, along the axis the arc is a copious source

of electrons. The plasma density here is determined by the ion density.

This is an "electron-rich" region. At the instant the machine is turned

on, a few extra electrons enter this region, charging it sufficiently nega-

tive to prevent more electrons from the duoplasmatron from entering, except

for a small flow to compensate losses.

The region well away from the axis receives ions by radial diffusion.

Electrons cannot easily diffuse from the central region because their

Larmor radius is very small. This region is "electron-poor." In the outer

region, the plasma charges positively (by building up sheaths at the ends

of the machine) and thus retains for a long time the few electrons it does

receive from diffusion, photoionization, etc. Thus, adjusting the anode

potential so that the center of the plasma and the wall are at the same

potential does not eliminate radial electric fields, except on the average.

However, in the latter case, counter-rotating cylindrical shells of plasma

would be generated by the E × B drift. This phenomenon would not be

expected intuitively when the Larmor radius is large, and it is not observed.

The deductions of the plasma potential as a function of radius and duo-

plasmatron anode potential given above agree with probe observations of

the potential.

The radial electric field can be removed by coating the end plate

with a suitable emissive coating which is heated so that it becomes a

source of electrons. (The duoplasmatron anode must be covered with a

suitable insulator to prevent excessive longitudinal currents from being

drawn.) When this experiment was performed, the radial electric field was

24



suppressed as expected. With appropriate biases on the end plate and duo-

plasmatron anode, the rotation is also stopped. However, this set of

biases stops the rotation whether the end plate is hot (emitting) or not,

although the settings are much less critical and the plasma noise level is

lower with the plate hot.

The asymmetric rotation becomes progressively more difficult to

observe as the background pressure in the machine is reduced. At the

lowest background pressure (5 × 10 -6 torr) the effect is not observable.

When this condition is obtained, the asymmetric rotation may be restored

by an increase in chamber pressure with no other machine changes. The

existence of the asymmetric rotation depends on the presence of neutrals

as predicted by the theory.

The ions diffuse radially at the same time they are drifting axially

away from the duoplasmatron. This diffusion manifests itself as a spread-

ing of the radial density distribution and a drop in the axial density

downstream from the source. The central density as a function of longi-

tudinal position is given in Fig. 3. Since the electrons do not diffuse

radially as rapidly as the ions, but have a larger axial velocity, an

electric field is established longitudinally which keeps the electron and

ion densities approximately equal according to the equation

exp (1)n = n° MT '
e

where n is the electron number density, no is the electron density at the

point where _ is zero, _ is the spatial potential, T is the electron

temperature, and e and k are the electron charge and Boltzmann's constant,
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respectively. (It has been demonstrated in other experiments that the

electron velocity distribution in the machine is Maxwellian. 4) We note

in passing that this electric field, which is parallel to the magnetic

field, extends over a distance of about 2 m in a plasma whose Debye

length is about i mm.

The observed diffusion, which causes a factor-of-two drop in the

central density over the length of the machine, is too rapid by a factor

of i00 to be explained by binary collisions. The decrease in central

density, which is a sensitive measure of the ion diffusion, is not much

changed by turning off the rotation of the plasma. Thus, the diffusion

is not caused by this rotational "instability." This phenomenon, which

has been blamed for the anomalous diffusion in other experiments, is not

the cause in our machine.
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IV. CUSP EXPERIMENTS

The anomalous diffusion can be dramatically reduced by rearranging

the magnetic field configuration of the machine. We have installed two

independent magnetic coils near each end of the machine. These coils,

which may be operated to provide either mirrors or cusps in the longitudinal

magnetic field, immediately surround the 4 in. diameter stainless steel

liner which bounds the plasma. They are located a few inches inside each

end of the plasma column. The geometry is shown in Fig. i. When the up-

stream coil (the one near the source) is connected so as to produce a

mirror in this region, very little effect is observed on the plasma. How-

ever, when this coil is connected to produce a cusp, there is a spectacu-

lar reduction in the radial diffusion of the plasma, as indicated by a

nearly constant plasma density along the central axis. A plot of the

central density as a function of longitudinal position with and without

the cusp field is shown in Fig. 3.

The broadband noise observed by a downstream probe in the iO to 50 kc

range decreases by about an order of magnitude when the cusp is properly

adjusted. The onset of both effects is rather abrupt and occurs approxi-

mately as the central field of the cusp goes through zero. Even when the

field of the upstream cusp is fairly close to the critical value, turning

on the downstream cusp has little or no effect on the density profile or

noise.
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There are various possible explanations of the reduction in diffusion.

One is that ions with a large Larmor radius simply are not able to enter

the machine through the cusp, and as a result the average ion has a much

smaller Larmor radius in the cusp case than in the mirror case. Since the

diffusion length is expected to scale with the ion Larmor radius_ this

would result in a much smaller diffusion coefficient. However, when the

upstream cusp is adjusted to a value that produces a reasonably flat

density profile and the downstream coil is operated as a mirror, some of

the ions that would normally leave the machine at the downstream end are

reflected, indicating that their Larmor radii are applicable. In addition,

the radius of the downstream plasma remains the order of one centimeter

when the cusp is on, an indication that the ion Larmor radius is still

large. Thus, this explanation for the result appears unlikely.

A second hypothesis is that the plasma exhibits some low frequency

instability (for example, the universal instability) in the mirror case,

and this instability is stabilized by an average minimum-B field condition

introduced by the cusp. But the fact that the downstream cusp has so

little influence on the diffusion makes it appear unlikely that the effect

of the cusp is to provide an average minimum-B field.

A third possibility is that with the cusp field inserted it is much

more difficult for electrons to go from the source into the machine. Thus,

for high frequencies_ we would expect that the source would be somewhat

disconnected electrically from the main body of the plasma. With the

normal configuration_ variations in plasma density or temperature at the

source produce corresponding variations in potential at the center of the

plasma in the machine. These potential fluctuations cause an associated

fluctuating radial electric field which would cause the ions to diffuse
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rapidly across the magnetic field lines. If electrons from the source find

it difficult to get into the main part of the machine, the potential fluc-

tuations and electric field would be reduced and the diffusion less.

We observe a potential difference of about 3 kT across the cusp,

with the main body of the plasma more positive than the plasma at the

source end. This reinforces the view that electrons have a difficult time

getting through the cusp. The order of magnitude reduction in noise when

the cusp is turned on also favors this explanation. In addition, low

frequency noise transmission experiments through the cusp (using probe

antennas) show an order of magnitude attenuation when the cusp is turned

on. However, there are two difficulties with the third explanation. If

the idea is correct, it should be possible to increase the diffusion by

driving the duoplasmatron anode with a broadband noise signal; we tried

this without success. It is possible that the driving signal was too small,

but the calculation indicated it was sufficient. In addition, this model

implies that the noisy electric field in the plasma should be highl_ corre-

lated at all positions in the machine. For usual values of the main mag-

netic field, the noise observed with probes is almost completely uncorre-

fated even when the probes are within a few millimeters of each other. This

result cannot be attributed to noise in sheaths around the probes. Sheath

noise could not be reduced by the cusp.

A fourth hypothesis, which seems to be the best explanation of all

the experimental results, assumes that the O.12 mm diameter plasma-

emitting surface at the anode of the duoplasmatron is subject to noisy

modulation. Magnetic lines through different parts of the surface have

different potentials, which persist down the whole length of the machine.
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lons passing near the center of the plasma experience a large, noisy elec-

tric field due to potential differences betweendifferent magnetic field

lines, and are thus diffused radially. Whenthe cusp is turned on, most

of the magnetic lines passing through the source intersect the stainless

steel cylinder bounding the plasma, and electrons on these lines cannot

get past the cusp. Thus, most of the electrons in the downstreamplasma

comefrom a small area of the source and large potential fluctuations do

not appear between adjacent magnetic lines, lons pass through the cusp

non-adiabatically and so are not muchaffected, except that those having a

large gyroradius strike the wall and are lost. This hypothesis agrees both

qualitatively and quantitatively with all our present observations.

As a test of these ideas, we performed a further probe noise correla-

tion measurement. Probes were constructed which measurethe noise at a

single radius (our previous probes averaged over radius). These new probes

are in the form of an insulated rigid coaxial cable with overall diameter

of 0.028 in. Onemillimeter of the center conductor projects beyond the

shield conductor. Theseprobes samplethe potential in a sphere of radius

of about one millimeter. Whenthe main magnetic field of the machine is re-

duced so that the magnetic transform of the orifice of the duoplasmatron

is much larger than two millimeters, the noise on these probes is corre-

lated when they are on the samefield line and not otherwise, as expected

from theory. In summary,we now have a rather complete understanding of

the anomalousdiffusion mechanismin this ease. Wealso have a method for

greatly reducing the diffusion.
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Rotation and Diffusion of a Column of

Plasma in a Magnetic Field

J. H. Malmberg and C. B. Wharton

ABSTRACT

The dynamics of a long axisymmetric column of plasma immersed in a

longitudinal magnetic field has been investigated experimentally. Large,

very regular, periodic variations in plasma density are observed (with

probes) at a given radius and azimuth. Analysis of the probe measure-

ments shows that the column of plasma is rotating and is not symmetric

about the axis of rotation. The rotation is associated with the existence

of a radial electric field. When the mean radial electric field is set

to a certain critical value, the rotation stops and the low frequency noise

in probe signals is greatly reduced. The diffusion of the plasma is about

i00 times too large to be explained by binary collisions and is not

changed by stopping the rotation.

In a second (and successful) attempt to reduce the anomalous diffusion,

the plasma is injected into the main part of the machine through a cusp.

This results in a spectacular reduction in the radial diffusion of the

plasma, as indicated by a nearly constant plasma density along the central

axis. Possible explanations of this result will be discussed.
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For a plasma with finite cross section of the sort whihh occurs typically in laboratory plasma waves
experiments, in a constant magnetic field, the Landau damping (or growth) is obtained by a perturba-
tion procedure in terms of the plasma velocity distribution function and potential and density profiles.
The result is applied to the damping associated with the upper and lower branches of the dispersion
curve for longitudinal electron plasma waves in the case of a Maxwellian velocity distribution in slab
and cylindrical geometries. Application is also made to the growth rates resulting from a low-density
electron beam with radially dependent energy superposed on a Maxwellian.

I. INTRODUCTION

HEORETICAL investigations of the dispersion
relations and damping of longitudinal electron

plasma waves I have been carried out in considerable

detail for the case of homogeneous finite-tempera-

ture collisionlcss plasma. Itowever, it is of interest to

extend these considerations to inhomogeneous sys-
tems as well, since laboratory experiments 2 always

employ bounded plasmas.

A number of other papers have treated this sub-
ject. Trivelpieec and Gould 3 considered a cylindrical

cold plasma inside a concentric cylindrical conduct-

ing surface in the quasi-static (low _) approximation.

The boundary conditions lead to a dispersion relation
with two branches, a lower one corresponding to

Langmuir oscillation, and an upper one, the "back-
ward wave," near the cyclotron frequency. Gould _

generalized this resIflt for the lower branch in the

ease of strong magnetic field (_, >> %_), using the
finite-temperature dielectric tensor and treating a

smoothly varying cross-sectional density profile in-
stead of a step fimction. The effect of finite tempera-

_ure is to introduce Landau damping and to permit

_0 to become greater than ¢%_ for large k,, just as
in the homogeneous case.

Lichtenberg and Jayson 5 consider one- and two-

stream Maxwellian plasmas, keeping lowest-order

finite temperature terms in the dielectric tensor. For

a cylindrical plasma with constant density bounded

at r = R (step-flmetion dependence), they solve the

dispersion relation for the decay (growth) rate in

See, for example, T. H. Stix, The Theory of Plasma Waves
(McGraw-Hill Book Company, Inc., New York, 1962).

J. H. Malmberg and C. B. Wharton, Phys. Rev. Letters
13, 184 (1964).

8A. W. Trivelpieee and R. W. Gould, J. Appl. Phys. 30,
1784 (1959).

4R. W. Gould (unpublished).
5A. J. Lichtenberg and J. S. Jayson, J. AppL Phys. 36, 449

(1965).

terms of frequency, wavelength, and plasma density,

temperature and radius. The contribution to this

growth rate comes from resonance between electrons

and three plasma modes: the Langmuir oscillations,

the n = 1 cyclotron mode (backward wave), and
the n = -1 mode.

In this paper an approach similar to that of

Lichtenberg and Jayson is employed. In See. II a

variational technique is used to calculate the decay

rate -), as a small perturbation correction to the wave

frequency. Here a Maxwellian electron distribution

is assumed, but the density and electric potential

are arbitrary slowly varying fuhetions of position,

regarded as being obtained from measurements.

They enter in the final expression for 7 only in two

rather insensitive averages. The result describes

damping in both upper and lower branches. Formulas

for the growth rate iIl both two-dimensional (slab)

and cylindrical geometry are derived, for strong
(fL > _%,) and weak (f_, < %,) magnetic field.

In See. III, this cMeulation is modified to include

the effect of a low-density electron beam. The beam

is injected axially with a very narrow velocity spread

about a mean velocity which is a function of position.

This injected beam is shown to lead to an instability

of the lower branch mode which may be made quite

gentle, so as to be describable by the quasi-linear

theory?

II. DECAY RAT]_ FOR MAXWELLIAN PLASMA

We consider a plasma which is uniform in the

direction along the uniform constant magnetic field

(the z direction) and inhomogeneous in the trans-

verse direction. We restrict ourselves to low _ (quasi-

static) systems, so that the perturbed electric field

is derivable from a potential. If the plasma were

6W. E. Drummond and D. Pines, Nuel. Fusion Suppl.
Pt. 3. 1049 (1962).
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LANDAU DAMPING AND GROWTH OF ELECTROSTATIC MODES 199 *

homogeneous in the transverse direction as well as

along the field lines, we would, of course, be able
to integrate the linearized Vlasov equation along the

unperturbed particle orbits to obtain Poisson's equa-
tion in the form

V.,.V_ = 0, (1)

where , is independent of the coordinates. This

equation is still valid for spatially varying tempera-

ture and density, provided that the scale lengths for
the variation are large compared with the electron

Larmor radius. This can be seen most easilf by

noting that the zero-order or "background" electron
distribution function 10 must be a function of the

single particle constants of motion X = x + v,/_.
and Y = y -- v./_. if it is to exhibit transverse

spatial dependence. The first-order perturbed dis-

tribution function/, is equal to

=f_'1, _®dt' [e E(x').V,,]o], (2)

where x' and v' are related to t' by the unperturbed

orbit equation. If 1o depends on the coordinates

through X and Y, then (for example) the x com-

ponent of V, 40 is

Ofo Of..__omy" Ofo 1 (3)
Ov'_ - Owl 0 Y _. '

where wi = ½mv_ = 1 2_m(v, + v_) is also a constant

of motion. Since the Larmor radius p, has been
assumed much smaller than the scale of the trans-

verse density variation, which is taken to be of the

order of the plasma width or radius R, we can Taylor

expand ]o, retaining only the lowest- and first-order
terms:

v, Of..__o_ v_ Ofo
fo(_, X, Y) = fo(e, x, y) q-- _--_,Ox _. Oy " (4)

When 1_ from Eq. (2) is substituted in Poisson's

equation, the gradient terms yield corrections of

order p./R to the dielectric tensor for a homogeneous

plasma. Likewise, the constants of motion X and

Y become x and y, respectively, to the same order;

if we drop corrections _._p./R in both places, Eq. (1)

in the usual form is still valid, with 1o now an arbi-

trary function of the coordinates, subject to

p,/R << 1.

We discuss systems with two-dimensional geom-

etry first, then outline the analogous treatment of

cylindrical systems.

A. B. Mikhailovskii, in Topics in Plasma Theory, M. A.
Leontovich, Ed. (State Atomic Press, Moscow, 1963), Vol. 3.

For two-dimensional geometry we write the poten-
tial as

= ¢(x)e '_'-'_'. (5)

_b(x) should vary smoothly over the cross section of

the plasma, so we can speak of an effective trans-
verse wavenumber k± _-_ 1/R. We assume Max-

wellian velocity distributions with ion temperatures

not substantially larger than electron temperatures,

so only the electron contribution to _ need be

retained. Then for long wavelengths

,_/k, >> v_, (6)

and small electron Larmor radius

simplifies to T

where

p,/R << 1, (7)

t = 22t_ + _11, (8)

__, 2_---_2_e-'I.(z)x.[1 -4- x.Z(x.)] (9)_ = 1 "4- _-- o:kuvr

and

2 n2°:-----e--_Z(x.)e-" -- I.(z). (10)
¢± = 1 + .... (_kuvr z

Here _, is the electron plasma frequency. _ =
(4_e:/m)n(x); _. is the electron cyclotron frequency;

vr2 = 2T/m;

by (7);

z = k_T/_2.m <_ 1,

x, = (o: -- nl_,)/kltvr >> 1

(unless o: _ nf_.), by (6);
Z is the plasma dispersion function of Fried and

Conte s, defined by

. , f dx e i,r_e_ pZ(_) ® x- _-i_ "-_

--1(1 + 2-_ +4-_+ ... ) (11)

asymptotically for Re _">> 1 >> Im _'; and I. is the
Bessel function of imaginary argument of nth order

I_(z) _ (½z)'" [1 + O(z_)]

for small z.

In Eq. (8) diagonal terms and corrections to eu

and e± arising from the variation of the density n

8B. D. Fried and S. D. Conte, The Plasma Dispersion
Function (Academic Press Inc., New York, 1961).
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200 DAVID L. BOOK

havebeendroppedbyEq.(6)andEq.(7);inclusion
of thelattercanleadin somecasesto theexistence
of unstabledrift modes,the universalinstability.

NextweexpandEq. (9)andEq. (10)for large
z. and small z, using the asymptotic form Eq. (11).
If in addition we write 0) = 0)0 + i3", "r/o)0 << 1,

,'rod retain only term,_ to first order in 3"/0)0 and

exp (-.r2.), the result is

O_o (klLvr)a e- + , (12)

2

COy

e_ = 1 --_o =_ _2=

(+ i ½7r½ w---L-_exp L \ kllvr / A
0)olClIVT

[_ 23"0)°0):+ exp \ kyr I A) (0)20-- 9_,)2] "

In ]':(1. (13), contributions from higher harmonics

(in[ > l) are exponentially small mfless n_, _ w;

then they are small like sonic power cf z. Unless the

magnetic field is very weak, it is usually possible

to neglect the n = - 1 term as well, and this is (lone
in what follows.

Sat)siltation of Eq. (8) in Eq. (1) yields

(d/dx)(,. O¢/Ox) - l:]e,_ = 0. (14)

1.'or given boundary conditions and density profile

n(x), this equation is an eigenvahm problem which

m principle yields the analytic form of _k and a dis-

persion relation for complex 0) as a function of kl. In

general it is not possible to carry out this calculation

exactly, even in the limit T _ 0 where 0) is real and

the modes propagate undamped.

Nevertheless it is possible to utilize Eq. (14) in a

perturbation approach. To do this, we rewrite it
in the form

L¢ = (Lo + iL,)_b = 0. (15)

Here L, and L_ are the real and imaginary parts of L:

Lj (d/dx)_i)(d/dx) _ ,_, ,)= r_ , j = 0,1;

= -- %/(0)0 0,), = 1 -- (0)JWo),

kit

Fro. 1. Dispersion curve for
homogeneous plasma in strong
field.

,, 2,0)@0: ½,r½ 0): [- (__o- _._21
** - = 22 + -- exp L-\ k,--_7--_/ A;('_o- _,) ¢Ook¢_

el - _ + 27r%_ exp L VkTdJ- •

Now consider the equation

Lo¢0 = 0 (16)

which describes undamped waves propagating at

= _' (16) byT 0. Multiply Eq. (15) by ¢*(x), Lq.

_*(x), and integrate over x from - m to + co :

f;dx g,*_Lo_,+ i dz _*_L_g, -- O, (17)

f_idz**Lo o= f]odx¢*0L0 =0, (18)

since Lo is self-udjoint. Finally, subtracting Eq. (18)

from Eq. (17), approximating ¢o _ _band integrating

by parts yields

f® '_k_3" [;_ (_202w:3"w°_:)2dxd_/2dx 20); I¢(x)?+ dx
--_ 0)0 • --

= -- dx _" 0)----_exp -- --
0)okut'r \ lqvr ! A (lx

2_r k 110)v0) 0 0)0 2 [2

-- dx (k,vr)-------_exp -- k_-77r ['$(x) (19)

This may be solved for 3' as

,--=_., +---
0)0 (lqvr)a exp --\kl_r] _] 4 k_vr

r °.YlDF + o_.o],.exp L-\/_,-7_-7--_ _ j )t_ (<4 _,)_ F , (20)

where

f; d¢ 2, (21)F = _ dx 0)_ dx

f"G = lc_ dx 0)_ I¢,(x)I _. (22)
-m

For an approximately homogeneous plasma in

which t2, >> 0),, the dispersion curve looks ms shown

in Fig. 1. On the lower branch, 0)o << _2o, and the

equation for 3' reduces to

_" ri[0)a°/(k_vr)ale-<"'/_"_)'G (23)
0)0 = -- (0)o/9,)'F + G

The calculations of Trivelpiece and Gould _ and of

Gould* show that for small k_, 0)o/_. goes like k_R.

Since F/G _-, (kiR) -_, we see that Eq. (23) reduces

to the familiar expression for the Landau damping

of a homogeneous plasma in this limit, as it also does
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ill the limit R -_. Oil the upper branch, _o "_ _,,
,rod

_4-_r_(_°/k"vr)e-[("- _')/kLL'TJ'F (24)
-- 4 2

¢o,) [Wo/(Wo -- 12,2)2]F -t- a

which is wflid provided I_,, - _2,I is not small com-

pared with k,vr.

If _p >> _2, through the bulk of the plasma, there

are still two branches; on the lower one, _o <_ 9,,
and on the upper one, _o >> 12.. Now Eq. (20) does

not simplify.
For the case of cylindrical symmetry we assume

the potential is azimuthally symmetric:

,_ = ¢(r)e 'k"'-'_', (25)

and Eq. (14) becomes

- k#,_b = 0. (26)(1 It) (d/dr) [r, _(d C/dr) ] 2

llerc elt and _ arc again given by Eq. (9) and Eq.

(10), since in three dimension , is diagonal and
%_ _ e_, _ e± in the approximations Eq. (6) and

Eq. (7).
The perturbation cMculation goes through un-

changed, except that now

(d/dr)[r (o ,2 (o).L_ = _ )(d/dr)] = Iq_u ,

L_ (d/dr) [r,_')(d/dr)] '-_ (_)

The result is identical with Eq. (20), where now we

must replace Eq. (21) and Eq. (22) by

: d_b 2. (27)
= fjo_drr_ dr 'F'

f/G' = k_ dr ro_ I¢12. (28)

The formul_ for _ simplifies as before when we spe-
(.ialize considerations.

This case may bc generalized without difficulty

to include azimuthal dependence in _b.

IH. GROWTH RATE FROM BEAM INJECTION

We imagine that a low-temperature beam of elec-

trons moving parallel to B is superposed on the
Maxwcllian which was considered in Sec. II. If we

ignore thermal motion within the beam altogether

and assume it is cylindrically symmetric, the part
of the electron distribution function arising from

the beam has the form

I_(_,r) = D(r) _[,_,- Vo- .(r)] _(,i), (29)

where a(r) + vo is the velocity with which particles
at a distance r from the axis of the system are

FIG. 2. General form
of observed potential
in plasma confined by
magnetic field.

moving; we assume a(0) = 0. In general, a(r) will

increase with r, since we may imagine the beam to

have arisen as a result of shooting electrons from

an electron gun into a potential profile something

like that shown in Fig. 2.

We are primarily interested in simple modes which

propagate through the plasma as a whole, that is,
in which all the electrons in a cross-sectional slice

participate. This being the case, we may expect that
for a beam distribution function which varies radially

as does (29), the wave will see an effective distribu-

tion averaged over r. In the case of interest, the local

beam density is much smaller than the density of the

background Maxwellian,

D(r) << 1. (30)

To include the effects of the beam, we retrace

the argument leading to Eq. (20). If we let ft, >> _o
in order to concentrate attention on the contribution

of the lower branch to % Eq. (15) is still valid; but
now

(o) (1)
_± _ 1; _± _ 0;

and

(,, 3'_ -4- 60_ 0lo (31)
ell - O_o _r k_ dSV _v_ _ II - ,

with 1o = 1_ +/'_. The second term in Eq. (31) is

the usual expression for the imaginary part of the

parallel component of the dielectric tensor with a

general velocity distribution ]o when _/_0 << 1.

If 1_ vanishes, repeating the operations of Eqs.

(15)-(20) yields the formula for the Landau damping
of an infinite homogeneous Maxwellian plasma, iden-
tical with that which is obtained when fL --* oo in

Eq. (20) and G cancels in numerator and denomina-
tor. However, the same manipulations applied to the

radially dependent beam component result in a

contribution to the decay rate

- 1f/

where

• __ dv _v _ o_o

g = D@) 8_ -- v0 -- a@)].

(32)
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fj
In calculating 1/G', we c'_n ignore ]b since the beam

density is negligible compared with the background

density.

Equation (32) may be rewritten in order to in-

vestigate particular choices of a(r) and D(r). To do

this we assume that a(r) is monotone increasing,
so that

fi[v -- v,, -- a(r)] = [1/a'(ro)] _(r -- r0),

where a(ro) = v - v,, aml a' = da/dr, and

0 01" ,.0 1 0Ov - Ov 01" - a'(ro) 07'

Then integrating by l)arts we have

"r 1 _r o 1 ro [¢12w¢ D(ro) 6(ro)
,.......- (;. _ _z 2(_,,--5 .'(ro)

Ir w_ D(r) 7_--k O(r,) 0 ]_b12 , (33)
Or a Lr) J)_-,-,I(_o/_)-_ol-_,

where 0(r0) is the Heaviside step function. This

shows that the contribution to _, for a particular

phase velocity ¢oo/k:_ comes from particles at a dis-
t:tnce _'(, sufficient to make

Vo+ _(ro) = _o/k,_.

l.'or wo,,'k < v,,, there are no such 1)articles, since

a(r) > O; so if rD(r)/a'O') _ 0 in the limit r---* O,

there is a jump in the effective velocity distribution,

yielding a 6-function dependence in % Such a singu-

larity is inconsistent with our assumption that

%/w,) << 1. In order to ensure that formula (33) will
be v.did, it is necessary to introduce finite beam tem-

perature or make D(r) vanish sufficiently fast that
lhc 6 function does not appear. Applications of Eq.

(33) are thus snbject to a self-consistency condition.

This condition is not satisfied by the simplest models

of radial dependence of the beam, as we see later.

It is necessary to make additional refinements in

choosing _0') and D(r) in order that _,/wo be small

everywhere.

Following Fig. 2, let us examine some plausible

(.hoices for a(r). We assume D(r) = D, a constant,

and assume that w_ and [¢l 2 are roughly constant

out to some value r = R. This implies that the den-

y

_@ Fro. 3. Outline of a template with shape
-- --_ described by r-"= a_sin 0.

sities of both beam and plasma _re constant out. to

i" = R, then drop off abruptly to zero.
The first choice is

a(r) = Ar 2, A = eonst. (34)

Then a'(r) = 2Ar, and ro = [(v - vo)/A] _. We see

that there is a jump in the effective distribution,
since

,im ',_o+ - 2A - const.

Formula (33) yields

- o' 2 Wo 2[A(v - Vo)]t 2Abeam

• [6(ro) -- _(ro -- R)]. (35)

In this model, the self-consistency of the treatment
is violated at two points, defined by the arguments

of the two 3 function in Eq. (35). The first singal-
larity is a consequence of the b_havior of a(r) for

small values of the radius. The " _.ak at ro = R may

be flattened out simply by ret,_ ug a realistic radial

dependence for w_ [¢]_.

For the second choice of a0"), we argue as follows:

an electron will have kinetic energy

½my2 = Eo - V, (36)

where Eo is the "muzzle" energy of the electron

gun and V is shown in Fig. 2. If V has roughly

parabolic dependence or r, then

v = [(2Eo/m) - (2V/m)] _ _ [V_o+ _2r2]_. (37)

Thus

a(r) = (v_ "k v2r2)t - Vo;

a' (r) dr

Now formula (33) tells us that for 0 < ro < R,

(_'/O_o)b_,m = (1/G')(½7r)w_ DoJ_ [¢r (1/_) •

Note that the 6-function singularities at ro = 0 and

ro = R still appear, for the same reasons as before,

so this model is still not consistent with the assump-

tions used in the derivation of Eq. (33)•

It is not necessary to treat finite beam temperature

to remove the sharp peak in 3" which arises in both

of these examples. Thus far we have taken D(r)

to be a constant. If a template is placed before the

stream of electrons from the electron gun, it can

screen some out, so that D(r) may vanish at r = 0.

For example, let the template be in the form of a

screen whose edges have roughly the shape shown
in Fig. 3, satisfying the equation r 2 = a_ sin 0.
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Then

bin- t r*/a_ reD(r) _ 4 dO "_ 4

for r small.

Now, taking ¢0_ [¢1" gradually decreasing as 7"
increases (instead of a sudden drop at r = R), we

have for 3' a curve of the form shown in Fig. 4.
Note that the area under the curve sums to zero.

This follows from the calculation leading to Eq. (33),

which expresses 7 as a total derivative with respect

to v of a quantity which vanishes as v _ Vo and

_) ----> co.

IV. SUMMARY

We have discussed plasma waves propagating

parallel to a uniform magnetic field in a system

whose density is a function of the transverse co-
ordinates. For a zero-temperature plasma, no Landau

damping or growth occurs. When a finite spread

(finite temperature) is introduced in the velocity

distribution of the electrons, the eigenfrequeneies

become complex; however, if the spread in the dis-

tribution is small (vr << O_o/k,j,etc.), 7, the imaginary

part of the wave frequency will be small and the

shape of the potential eigenmodes of the system as

functions of transverse coordinates will not be greatly

altered. The effect of wave-particle resonance is to

cause the zero-temperature eigenmodes to grow or

decay slowly in time as a whole, without changing
otherwise. The rate of decay or growth depends on

the slope of the velocity distribution function at the
velocities where resonance can take place, weighted

by the electrostatic energy as a function of trans-
verse displacement and averaged over the density

profile of the plasma. The average is quite insensitive
to the exact shape of the transverse profile, and the

resulting formula for 7 is not qualitatively different

from that obtained for infinite homogeneous plasmas.

It can be applied to predict the growth or decay of

plasma waves in an electron plasma confined by a

magnetic field, provided that the density and poten-

tial profiles, shape of the electron velocity distribu-

tion and dependence of the real part of the wave

frequency on kl_ are known.

Fm. 4.7/o0modified by template and radial dependence
of plasma.

For a thermal plasma with Maxwellian lo, ")' is

negative and damping occurs. If an electron beam is

injected into the plasma with radially dependent

velocity determined by the transverse variation in

potential, the averaging process described above
smears it into a "gentle bump" on the tail of the

Maxwellian, so that waves with the proper phase

velocity experience slow growth, just as in the ideal-

ized gentle bump problem with an infinite homogene-

ous plasma. Note that if the plasma profile were not
finite and varying, this smearing would not take

place; the injected beam would be a sharp spike on

the velocity distribution function, producing a two-

stream instability. As the amplitude of the unstable

spectrum grows, the resonant partMes lose energy

and slow down, flattening down the positive bump in

the growth rate indicated in Fig. 4. The end result

is a stationary wave spectrum and a stable velocity
distribution, the quasilinear limit. This approach is

the basis for an experimental study of the quasilinear

theory. _'_°
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I. INTRODUCTION

Recently, there has been considerable interest in measuring the dis-

persion of the upper hybrid mode in a uniformly magnetized plasma. 1'2'3 In

this paper, we calculate the behavior of the normal modes of a spatial

inhomogeneous plasma in this frequency range.

In the limit in which the density is constant across the plasma, the

eigenmodes of the uniform infinite medium can be used to determine the dis-

persion. Such an analysis produces a theory in good agreement with experi-

ment.4'5 However, for the case in which the density varies in a direction

orthogonal to the uniform magnetic field it becomes necessary to solve a

differential equation which is characterized by the vanishing of the coef-

ficent of the second derivative of the perturbed potential 6 at a frequency

near the local upper hybrid frequency. Since the differential equation is

obtained (in the small Larmor radius limit) from a convergent expansion of

an integral equatio_ it is now necessary to go to higher order in the deriva-

tives of the perturbed potential. In general, such an analysis leads to a

fourth order differential equation in which the coefficient of the fourth

derivative is down by the Larmor radius squared; howeve_ due to the acci-

dental cancellation in the second derivative, the higher order term can no

longer be neglected. To date, the analyses 1'6 have been limited to one

dimensional models in which the wavelength of the perturbed wave is in the

direction of the density gradient. In this limit the differential equation

factors and one needs only solve a second order equation.
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In the present calculation we incorporate the effect of wavelengths

parallel to the magnetic field. We concern ourselves with two different

regimes. In one, the plasma is Maxwellian and Landau damping is introduced.

In the othe_ a beam with a velocity parallel to the ambient magnetic field

is superimposed upon a Maxwellian plasma and instability occurs. Our

primary purpose is to explain the results obtained in the Malmberg-Wharton

experiment. 7

The theory for the spatially inhomogeneous Maxwellian plasma predicts

the presence of a mode whose frequency increases with increasing parallel

wavenumber. In addition_ the inhomogeneous theory predicts a dispersion in

which the frequency is an extremely flat function of the parallel wavenumber

for small values of the latter. In fact, the group velocity goes to zero

in this range, implying strong spatial damping and thus the absence of a

wave in this region. Consequently, what should be observed is the onset

of a wave at finite k with the frequency increasing with k, the behavior

8
of the M-W experiment.

Our method of solution is a WKBJ analysis of the fourth order differ-

ential equation. Since it turns out that the eigenmode is e×ponentia]ly

small outside the turning point of the fourth order equation_ but well with-

in the plasma, the analysis leads to reliable values of the eigenvalue but

not of the eigenfunction. The answer occurs as an integral from the origin

to the turning point of a modified phase equal to (n + ½)w.

In Section II we derive the fourth order differential equation.

Section III contains the WKBJ analysis for cylindrical symmetry; to be

complete we include the dispersion relation for slab symmetry. Section IV

includes the effect of the beam.
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II. FOURTH ORDER DIFFERENTIAL EQUATION

The starting point is the linear perturbed Vlasov equation. We assume

the equilibrium quantities vary only in the radial direction. The ambient

field is uniform and in the z-direction. We do not include any effects

of an equilibrium electric field. If we Fourier analyze in z and t

(e-i_t+ikz), we have

e y +i(_t-kz -i_t'+ikz' V
fk = + - dt' V. _ - -_, 17 e e -_v f ,w,E,_)

(i)

for the solution to the linear Vlasov equation. The constants of motion

are

v v

E : x+ Y x, 1_=y-_

2 2 2 ( )V : V + V _ W = V 2
x y z

Also, the integral in Eq. (i) is along the unperturbed orbits defined by

z'-z = w(t-t')

v = v cos( ¢-O(t '-t))
x

v = v sln_-_'-_jj-'_ _'_ ;''
Y

(3)
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If we write

f(v2,w,{,_) = g([_,_)[_I 3/2 e-(_(v2+w2) (h)

for a Ma×wellian velocity distribution, we can integrate Eq. (i) by parts

to obtain

fk ---- e[_)3/2e-C_(v2+w2){2(%g(_,1])[_(X

t

I vx) ],y)-ia_ dt' _0 --_, 9 -_ e -i<7_(t'-t)

--CO

, (5)

where we have defined

= co-kw (6)

To proceed we use the small Larmor radius limit, i.e., v/_ << {,2], and

Taylor expand _0 inside the orbit integral as

n m

_0 : - --_ n' ml _({,_) O -<m+n < 4 (7)
• _{n %_m

keeping terms up to l_+Q). That i_ we drop terms of order i/(a_2_) and

higher since we are concerned with behavior near the upper hybrid frequency

in the limit _p/O < 1.
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If Eq. (7) is substituted into Eq.(5) and integrated we obtain

_=--_(_1_j_°-_:v_+_ [ C 2co V

±

4 (v (_ i _g

v_ e e g +
+ _Y_ _-_ go+_

v _ 2_

with

I -i_.ei¢ e
_g _ _ vm _ + __ v B 2_

* 8_ a_]

(8)

(9)

2
Next, we integrate over v

and the density given by

2
and @ to obtain, with a = i/2_

a2 2 a4 2)2 )n(×,y) : _ + T _ + _ (_ g(×'Y)
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i (a2<)- _ b.(V±n)xV 1 + _- 2 ]i a--(V V n) _ V i a2 <
+ _2 _±_ : ( n)v2.L± 2_2 ±

(_2__2)_2 _ l_ _± ± • (_V n) (

+ i .VxnV i + a
_ _ ± -7 vb'v×nv + --

•b.(Vn)×V v]_(× y_l.

(lO) /

If we now make use of Poisson's equation and incorporate the plasma

dispersion function of Fried and Conte 9

2
-x 1

= _ d× e _ (Zl)
Z(_) /_ ×__ ,

_CO

we have for k =0
£

2 i_
a

r %r
D2 i _ %M i _ _

_ b r _-_ (r) _ _ r B-r + _ r ko(r ) _-_ +
D2(r)

= o (12)

for cylindrical symmetry and

a2 _2_D2(x) 82_

_x 2 Sx 2

_ ++ _ ko(×)
_(×)

D2(x)
(13)

for slab geometry. We have defined
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_2p(r) 1_,r__ [_zI_l_IzC_l+_C__I]_

and

1

[ c I]kI : k 1 +7%( [
(14)

with _(r) = 4we-_2mn(r)

dropped terms of order

radius and is of order

the local plasma frequency. Note

a2/R 2 in the definition of k o. R
1

{71(_2%1_2)]-_.
P

that we have

is the plasma
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III. WKBJ ANALYSIS

As previously mentioned, it is the vanishing of k@ the coefficient

of the second derivative, which dominates the structure of the eigenmodes.

To obtain the eigenvalue we need only connect, to the well behaved solution

at the origin, that solution about the turning point (k ° _ O) which van-

ishes outside of the plasma. To do this we make use of the WKBJ approxi-

mation in the region between the turning point and the origin and in the

region beyond the turning point.

First, near the origin (we consider the cylindrical problem) we have

%7 r _r - 5-7 r _r - - _ = o ,

where

._k2- 4k 2 a2'"

: o _--o l (_)
k2 k 22D 2

Thus, near the origin

: Jo(k+(O)r) + AJo(k-(O)r) (16)

where we have excluded the ill behaved solutions.

To obtain the solution in the vicinity of the turning point, or rather

how the solution on one side of the turning point connects on to the solution

on the other side, it is convenient to make the substitution
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r x
m = e

R

which leads to

7 + k]2(x)R2 xl2 _2 -2× D2(×) -G _ ko(X) E + e2 re(X)
_x 2 e _x D2(x)

= o (17)

Well away from the turning points we have for the WKBJ solutions

± R -x/2 i I i
_0_=- e

a D--[_ /--_ _

exp(_ i _x dxe-Xk_ ) . (18)

To arrive at Eq. (18) we set _=e S(x) and solve by iteration with

S" << (S') 2, etc. It should be pointed out that the derivative of the

coefficients relative to the derivative of _ is small by at least

since, as will be subsequently seen, the wavelength of the mode in the

direction of the density gradient is on the order of r_. Moreover, as

will be shown, k is on the order of a/R; and so we see that all terms of
O

Eq. (17) are the order of unity, whereas the sixth derivative term (which

we have not included) can easily be seen to be of order a/R and therefore

can properly be dropped. Further note that for r < rturn the WKBJ

solutions are oscillatory, while for r > rturn the solutions are expo-

r_ntial (recall rturn is roughly the position at which k° = O).

To continue, we compare the asymptotic limit of Eq. (16) to Eq. (18)

±

and obtain the appropriate linear combination of _±, namely

IA II2 R 1 1 1 cos k+dr- _ +_kk cos k-dr - _ .(19)
D(r) _r_
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To complete the program we need only determine how the asymptotic solution

for r < rturn given by Eq. (19) connects on to the well behaved (expo-

nentially decreasing) solution for r > rturn. The procedure is to expand

k ° about its zero (the turning point) and evaluate all other terms at the

turning point which leads to an equation of the form

_--_- _ _ ×g+ _ _ _-o (2o)

5, 6, 7 are positive and constant. The solutions to Eq. (20) is given in

terms of the contour integra] I0•

¢ c

e¢(p) (21)

Since an analysis of the above equation has been given by Brueckner and

!i
Rosenbluth in an unpublished report, we shall only sketch the method here

and present the desired connection formulae. Our interest is only in the

asymptotic behavior, so we may evaluate the contour integral by the method

of steepest descent. The independent solutions are determined by the four

independent contours. The position of the saddles and contours of constant

phase (Im @ (p) a constant) for large x are sketched in Figs. i and 2.

The contours which connect the exponentially decreasing solutions to the

oscillatory solutions are easily seen to be

Jl _ - 14 + 13 - 12 + II

2j2-_z 4- z3- I2 +I 1 (22)
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Fig. l--Contours of constant phase for x >> 0
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Fig. 2--Contours of constant phase for x << 0
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Hence, the WKBJ solution which connects onto the decreasing solution is

i 2 R I , sin w+

j_ a D(r)_ +
i IIi ,_ i _ --i sin w

+ ____ cos w_ + B _ + cos w+ _k--_ ,

(23)

whe re

rturn
Y7

w_ = f (k_(r) - _I dr (24)
r

Finally, to connect on smoothly with the solution of Eq. (19) we must have

rturn A

(k+-k_) _ dr = (n + _)_ , (25)
o

which with Eq. (15) can be written

rturn 1

(k o - 2kla)2 -_ -- (n+dr -_)_a
o

, n = 0,I,2,... (26)

with

The dispersion relation for slab symmetry is identical to Eq. (26)

r -4 x.

A comparison of the above dispersion relation and that of the infinite

medium, namely

2

k2 kl

- -kD 2
o

, (27)

immediately reveals that there is little similarity between the two.

That this behavior is reasonable can be seen from the connection formula

given by the contour relations of Eq. (22), which lead to
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X X

-_'lk+ld× 1 -J'lk Id×
e + e

e + m

Now since k+ is a backward wave (phase velocity of opposite sense to the

group velocity) and k is a forward wave,we see that at the turning point
w

the incident k mode is converted into a reflected k mode and the con-
+

verse. Hence, it is not possible to set up a standing k wave in the

radial direction, but rather the only normal modes must be linear combina-

tions of k
+

of Eq. (26).

and k waves,which accounts for the new dispersion relation

We now return to the evaluation of Eq. (26). Assume

2

2rl 211% ( p

and expand in the square root to order (r/R) 2. (Since as previously

mentioned Ar/R _ g_7_, treat D as constant (for the same reason) to

obtain

a D(o) ,ko(O) - 2kl(O)a=2(2n+1) (28)
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where the position of the turning point is given by

2

r O) 2kl(O) a
R-_ = ko( - _ _ , (29)

which demonstrates that Ar/R _J_7 _. To arrive at these results, we have

taken the asymptotic limit of all Z functions of Eq. (14) except those

co-i)

whose argument is k_ _' since we are concerned with frequencies around

the upper hybrid frequency, which is in the vicinity of the cyclotron

frequency. In th5 s limit we have

I 2 I

ca_(r) <3 co_(r)

ko(r)- 3__2 _2
_z(_)+1

_-_ 2

Ii _2_(r)'
D(r)

k 1 = k, - 2
(R)

(14')

To obtain the dispersion of the wave we have solved Eq. (21) numer-

ically and have plotted (_-_)/_vs Re ka/_ for various values of the

parameters in Fig. _ In Fig. 4 we have plotted Im ka_ vs Re ka/_ for

the same parameters. Note, from Fig. 3, the flat behavior for small k,

62



0.4

N

0.3 m

0.2 -

0.1

O.O5

0

J (a) ½ = 0.5 _ = 0.05
D p

Wp
( (b) -_- 0.5 a 0.10

/

(b)

(c) __e._= 0 7 a _ 0.05
D " R

P

(d) Wp--=0.7 a
R -0.10

P

(e) _P_= 0.9 a
-_--= 0.05

P

_p
(f) - 0.9 a _ 0.10

D R
P

z = _-,0,/9, X = "_2 ka

I I

0.1 0.2

ReX

Fig. 3--Dispersion of the eigenmode n = 0

63



0.03

0.02

x
E

O.Ol

0

(e)

cf /
ce //

(a) _P a. 0 05 (d)
n -o.5 _-= .

p

_p a
(b) _ - 0.5 _-- = 0.I0 (e)

P

a : o.o5 (f)
(c) _-= 0.7 _--

P

X = l_-- ka

Wp =- 0.7 _ 0.I0
R
P

-_ - 0.05
a

= 0.9 R
P

__ a =0 I0= o.9 _- ,
P

I I

0 O.l 0.2

ReX

Fig. 4--Dispersion of the eigenmode n _ 0

64



which indicates the sudden onset for finite k. We have limited the

curves to Im k/Rek < O.i_ since the wave cannot reasonably be called a

wave beyond this value. In Fig. 4 we see the monotonic increase of Im k

with Re k above the onset. Just below this limit Im k becomes quite

large. It should be pointed out that n = O, the least damped solution,

and the one we have depicted is the least accurate. For improved accuracy

it would be necessary to solve the fourth order differential equation

directly. The dispersion of this eigenmode is in qualitative agreement

8
with the M-W experiment.
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IV. BEAM INTERACTION

To compute the effect of the beam interaction we must add to fk the

beam contribution. For the beam distribution we choose

= e ; (30)

(_-_co

that is, we assume a negligible thermal spread to the beam relative to that

of the background. Further, we assume uniform density for the beam. These

properties describe the unstable mode of operation of the M-W experiment.

Utilizing Eq. (30), we find the perturbed density associated with the beam

is

<< CO , (31)
P

and thus we have for the new coefficients of the fourth order differential

k' =k
0 o

2
Co

PB
+

(CO_kv)2__2

3
2 k2r PB D2(r)

k£2 = _1 - (CO_kV)2
(32)
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We first consider the beam mode where _ _ kV. Again, we solve the

dispersion relation numerically to obtain the results depicted in Figs. 5

through 7. We see that the unstable beam mode exists both above and below

the plasma mode in contrast to the lower branch wherein the beam mode above

the plasma mode is stable. In addition, there are two other damped modes.

One is a beam mode below the plasma mode and transmutes into a plasma mode;

the other, a plasma mode, becomes the other end of the beam mode. Once

again the accuracy of the analysis is limited since we restrict attention

to the n = O mode. Also, the WKBJ analysis breaks down at the upper and

lower limits of the beam curves since k' becomes too large; however, in
o

this range the second order differential equation becomes the appropriate

equation to solve. Again,these predictions qualitatively match the experi-

ment results. (See Fig. 7, with parameters similar to those in the M-W

experiment. )

We have also considered the second beam mode for which kV _ _ + _.

A numerical solution of the corresponding dispersion relation has been

obtained. Figure 8 shows the result for the parameters mentioned therein.

We see that an unstable beam mode exists together with a similar mode

which is damped.
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V. RESULTS

There are three qualitative features which characterize the eigenmodes

near the upper hybrid frequency: First, for the stable inhomogeneous Max-

wellian plasma, the frequency is an extremely flat function of parallel

wave number for small kLl, leading to large spatial damping in this region.

Second, for larger kll, _ increases with kll; simultaneously,the coef-

ficient of spatial damping which goes from its extremely large value in

the flat region to a small value beyond increases monotonically with kll.

Finally, for the case in which a beam is added to the stable background

plasma,we find an unstable beam mode both above and below the plasma mode.
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CYCLOTRON WAVES IN A COLLISIONLESS PLASMA

C. B. Wharton and J. H. Malmberg

ABSTRACT

Experimental studies of plasma waves in a 2 meter long collisionless plasma

column, over the frequency range 30 to 520Mhz, are reported. S_eclal attention

is given to the frequencies neighboring the electron cyclotron frequency_ b. At

least three (and perhaps more) distinct waves having resonances at or near _ b are
found. Two waves lie above the cyclotron frequency. One has a velocity greater

than that of light and is a forvard rave, apparently an electron_gnetic waveguide

mode, perturbed by the plasma. The other is a slow, backward wave. having a2 1 2
propagation cutoff at the upper hybrid frequency _uh = (_b + _ ) / ' with a dis-

persion curve resembling that of the CO1 cyclotron wave. ThisPwave is heavily

damped in space, typically lO to 20 dB per wavelength. The third wave is a slow

forward wave, lying below_ b and resembling a whistler. It is only moderately
damped.

The measured dispersion curves of these waves are presented, and their rela-

tion to the predictions of theory is discussed.

INTRODUCTION

A plasma column confined by a magnetic field inside a conducting cylinder

can support many modes of waves, both electrostatic and electromagnetic. The

theory of electron plasma oscillations, ion sound waves, Alfven waves, whistlers

and the ordinary and extraordinary modes of electromagnetic wave propagation,

for many different combinations of parameters such as magnetic field strength

and plasma density, have been considered in the literature, and excellent reviews

of this work have been published (refs. l, 2, 3, 4). However, detailed experl-

mental confirmation of the theories is lacking in most cases. We have previously

reported results on the dispersion and collisionless damping of longitudinal

plasma waves (refs. 5, 6). We report here measurements of the dispersion rela-

tions of waves near the electron cyclotron frequency. Because the cyclotron wave

is highly dispersive, with wavelengths varying from meters to centimeters over

a small frequency range (or density change, for flxed-frequency), a long, very

stable, quiet plasma was required for these measurements. This apparatus is dis-

cussed in the section below and in reference 12.

Growth and damping of spacecharge waves are easily seen qualitatively in

our wave experiments. However, there are several waves propagating simultaneously

at some frequencies, which makes quantitative measurements difficult. We have

not yet been successful in identifying some of the wave types, but for most

PKeCEDING PAGE BLANK NOT FILMED.
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waves, the measured dispersion fits the theory in the vicinity of the electron

cyclotron frequency. The wavelengths measured are long, yet the raves are

heavily damped. In a collisionless plasma, such as in the experiment discussed

here, collisional damping is not important; however, there may be Landau damping.

The waves observed near the cyclotron frequency consist of cyclotron plasma

waves, evanescent waves, and electromagnetic waves mixed together. Further,

when an electron beam is injected, certain cyclotron waves are observed to in-

crease in amplitude and others to decrease. Whether this is due to wave growth

and damping or to variations in probe coupling caused by the beam, has yet to be

determined. If the increase in amplitude is really due to wave growth, the

effects may be understandable in terms of the theory of microlnstabilities

(refs. 7, 8, 9, lO, ll).

EXPERIMENTAL DETAILS

These investigations used the same apparatus as used for the research

reported in references 5 and 12 with the addition of a i0 cm I.D. stainless

steel pipe surrounding the plasma, to cut off electromagnetic wave coupling

between the probes, and an insulating ring between the duoplasmatron and the

main chamber, to permit a voltage difference to be applied between the duoplasma-

tron anode and the grounded pipe. A general view of the equipment is shown in

Fig. I. Four movable probes are guided by rails in the vacuum chamber and con-

trolled externally by manipulators seen in the left of the picture. The probes

are able to explore any region along the chamber, inside a i0 cm radius when the

liner pipe is absent. When the slotted liner is in place, their angular varia-

tion is restricted by the slot width to about i0 °, allowing only a slice of the

column to be explored. The probes can be retracted radially completely out of

the plasma.

The plasm9 density in the _hamber near the duoplasmatron source is typically
between 5 x lO and 5 x 109 cm -_ for these experiments and'is steady state. The

density decreases downstream along the axis due to radial diffusion, producing

a 25_ drop from one end to the other. The radial density profile as indicated

by the saturation ion current to a small Langmuir probe is given in Fig. 2.

The plasma spatial potential profile may be inferred from the probe floating

potential, also given in Fig. 2. The center of the column is about 15 volts

positive with respect to the wall for these experimental conditions. The poten-

tial on axis is about (VA-3kT) , where VA is the voltage applied to the anode

of the plasma source and T is the electron temperature. We have observed

that, when the axial potential is below about lO volts, a rotational instability

is excited. The rotational frequency is between 20 and 60 kc., depending on

density, magnetic field strength and axial potential. As the duoplasmatron

anode bias voltage is raised, the rotation ceases and the plasma noise, as picked

up by probes, drops to a low level. Further increase in the bias voltage leads

to a rotation in the opposite direction at a frequency of 50 to 100 kc. accompanied

by a decrease in density. This effect will be described in more detail elsewhere.

The profile of Fig. 2 vas obtained in the "stable" condition. The profile is

broader or even double-peaked when the column instability is present. When the

column is rotating, a modulation of the transmitted waves and R.F. noise at the

rotation frequency is observed.
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The electron temperature is determined by Langmuir probes and by energy-

analysis of electrons escaping through a hole in the ion trap at the downstream

end. The electron temperature varies between 6 and 12 eV for various adjustments

of the machine parameters.

The R.F. transmission circuitry uses a conventional interferometer (ref. 4),

with 5 ks. modulation on the carrier, and a tuned video amplifier and phase-

coherent detector in the receiver, to reject noise outside the narrow pass-band.

The crystal detector in the interferometer is operated at a high level (--0.5 mA)

by keeping the CW reference signal level at about 1 mW. This gives an overall

system sensitivity almost as high as that of a superheterodyne. This high sen-

sitivity and large dynamic range are necessary to follow the waves over their

dampir_ range. High frequency fluctuations in the density of the plasma in the

transmission path result in corresponding changes in wave number (since the trans-

mitter frequency is fixed) which leads in turn to noisy modulation of the phase

of the received signal. Since the interferometer averages the received signal

over a comparatively long time, in extreme cases, this effect can destroy the

interference fringes even where appreciable power is still received. We call

this phenomena "phase scrambling" The signal is finally lost by "phase scrambl-

ing" rather than in the receiver-generated noise.

Plasma waves are launched and received with the same probes used for current

8nd potential measurements. These probes tend to excite a spectrum of plasma

modes, and because of their small size, have rather poor coupling. Planar grids

were tried but led to a serious loss of density, as well as to severe standing

waves.

In an attempt to improve the coupling of our probes to the cyclotron waves,

we tried launching from a matched slow-wave helix surrounding the plasma in

front of the suppressor grid. The signal transmission level increased ten-fold,

but the resulting wave-dispersion (plotted as an e-0, or Brillouin diagram in

Fig. 3) showed evidence of the presence of an electron stream. The 'beam"

velocity, as determined by the slope of the phase curves A_/AS, depended on the

helix voltage, leading to the conclusion that the electron stream was due to ion-

generated secondary electrons being liberated from the helix. The secondary

electron energies computed from electrode potentials are compatible with wave

group velocity for all of the data. Figure 3 shows an asymmetry about _ = O.

In the "downstream" sense (from plasma source toward ion trap) the normal plasma

waves were found, but in the "upstream" sense two sets of waves were found, one

corresponding to more-or-less normal waves, and the other corresponding to plasma

oscillations and cyclotron oscillations drifting on the beam of secondary elec-

trons. To further demonstrate the drift modes, we turned off the plasma and

turned on an electron beam from the electron gun, leaving the magnetic field

and wave probes as before. 0nly upstream propagation was found, but the beam

modes were pr_,_,-nt as expected. In the plasma experiment using the helix, with-

out the electron gun the "lower branch" line of the beam mode is seen to inter-

sect the _ = 0 axis at _ 3 Me, suggesting that the plasma frequency of the beam

of secondary electrons was about this value. The "upper branch" line passes

through the cyclotron frequency fb"

The effects of these beam-waves in the plasma can be eliminated by using

the wire probes to launch the waves. This reduces the wave launching efficiency,

79



but also lowers the current of secondary electrons to a negligible level. Sec-

ondary electrons from the ion trap suppressor grid and from the probe wires are

then a minor problem for wave propagation in the upstream direction only, lead-

ing to abnormal damping, and in some cases wave growth. Their current density

is too low to cause oscillations however, and no effect on downstream propaga-

tion is evident.

The lower branch plasma waves qualitatively fit a dispersion relation appro-

priate to the density profile sketched in Fig. 2. Further discussion of the

dispersion is given in the section below and in reference 6.

CYCLOTRON WAVE OBSERVATIONS

At least three (and perhaps more) distinct waves having resonances (wave-

number becoming large) or cutoffs near the electron cyclotron frequency have been

catalogued. Since two or three waves are present simultaneously at certain fre-

quencies, we have had to develop rather sophisticated techniques to analyze the

interferometer recordings. When two waves having widely different wavelengths

are present, the analysis is straightforward. When the wavelengths are within

a factor of 2 of each other, however, several measurements at closely spaced

frequencies are required to follow the dispersion of the individual waves.

Two waves lie above the cyclotron frequency. One has a high phase velocity,

(v_ > c), and is a forward wave. The other is a "slow wave", having a phase
that retards with frequency, i.e., a backward wave. The fast wave apparently is

an electromagnetic waveguide mode, perturoea by the plasma. The slow wave

apparently is the CO_ cyclotron wave (refs. 2, h, 13, lh) having a propagation

cutoff at the upper _ybrid frequency, fuh = (_b + f2)1/2. It is heavily damped

at wavelengths shorter than about 8 cm and we have _ot yet been successful in

plotting out the entire dispersion curve. Partial dispersion curves are shown

in Figs. h, 5, and 6. Only the "downstream" half of the _-B diagrams are plot-

ted. The "upstream" half looks similar, except for possible streaming effects

of secondary electrons.

Below the cyclotron frequency there appear to be several waves. The fastest

of these, fairly certainly, is a plasma perturbed TEmn waveguide mode, mentioned

above. Its dispersion curve matches that for a TEll mode in a waveguide whose

cross-section is 1/lO filled with plasma. The plasma density distribution shown

in Fig. 2, inside a lO cm diameter tube, gives a reasonable fit. The dispersion

for this wave is very similar to that for a whistler (refs. _, 15).

The other "cyclotron waves" have not been identified, but are strong waves,

having only moderate damping. One of them, shown in Fig. 5, having a cutoff

frequency between 200 and 300 Mc, seems to be a wave pair, with a frequency-

separation depending on density. If so, it should exhibit Faraday rotation.

The "whistler" mentioned above would also have Faraday rotation, except that the

ordinary wave component is cut off by the waveguide cutoff, leaving only the

elliptically polarized extraordinary component. No evidence for polarization

rotation of these waves has been found in our experiment.
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The "lower branch" waves--the conventional space charge or electron acoustic
w_ves of a warm, finite plasma column--have been extensively investigated at
General Atomic and elsewhere, and reported on in the literature (refs. 2, 5, 13).
Wehave plotted the measureddispersion curves here, since we use these waves in
a diagnostic manner, to aid us in understanding the cyclotron wave characteristics,
and to determine the plasma density.

Figures 4, 5, and 6 show effects of various plasma densities and cyclotron
frequencies on the cyclotron family of waves. The resonances and cutoffs of the
waves move in the expected manneras the plasma and cyclotron frequencies are
adjusted.

The above results were obtained using pure H2 gas in the duoplasmatron. The
waves were also investigated using a mixture of hydrogen and helium in the source.
The pressure and mixture were adjusted empirically to obtain the samewavelength
at someparticular frequency as observed using pure hydrogen as a source gas.
Whenthis was done the damping length at that frequency did not change appreciably,
but the signal-to-noise ratio was much improved, allowing waves to be observed at
shorter wavelengths than before. The fluctuations in D.C. probe current were
decreased by a large factor. The reduction in phase scrambling with the He-_2
mixture permitted wavelengths as short as 6 cm to be observed just above the
cyclotron frequency.

With the H2-Hemixture the adjustment of the duoplasmatron anodebias volt-
age is less critical than with pure }_, to achieve the stable column condition
in the previous section. In the unstable condition, the cyclotron waves have a
small amplitude modulation imposed, but the time-averaged data looks similar to
that obtained when the column was stable. This is not true with the "lower
branch" spacecharge waves, whose short-wavelength characteristics are very much
altered in somecases when the rotational instability is present.
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Cyclotron Waves in a Collisionless Plasma

C. B. Wharton and J. H. Malmberg

ABSTRACT

The propagation characteristics of spacecharge waves in a long

collisionless plasma column I have been studied over the frequency range

90 to 520 Mc. The collisionless damping of these waves has previously

been reported.2 Recently the growth of the wave amplitudes in space, due

to an injected electron beam having a velocity spread, 3 has been investi-

gated.

In this paper we report the appearance of a wave at frequencies

slightly above the cyclotron frequency _b" The wave appears to be

longitudinal, with velocities ranging from 3 x 108 to iO IO cm/sec

over the frequency range. There is also a wave at frequencies slightly

below _b that seems to be directed by the plasma column and which may

be a whistler.

iMalmberg, J. H., et al., Proceedings VI International Conference on

lonization Phenomena in Gases, Paris 1963, Vol. _, 229 (1963).

2Malmberg, J. H. and C. B. Wharton, Phys. Rev. Letters 13, 184 (1964).

3Drummond, W. E., Phys. Fluids _, 816 (1964), also Phys. Fluids _,

816 (1964).
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Comparison of the Electron Cyclotron Wave Dispersion

for Various Boundary Conditions

t
J. H. Malmberg

Gulf General Atomic, Incorporated
P. O. Box 608

San Diego, California 92112

I. INT RODUC TION

A column of plasma immersed in a longitudinal magnetic field and sur-

rounded by a conductor supports many electrostatic wave modes. In previous

work we have investigated the dispersion and damping of the "lower branch"

1-4
w_vres near the elcctron plasma frequency, m_1_ properties _ __ _1_se waves

are very insensitive to the details of the radial boundary condition. We

have also previously made a detailed set of measurements on the waves near

the electron cyclotron frequency. 5 It turns out that the observed proper-

ties of these waves are very sensitive to small changes in the radial bound-

ary conditions. The dispersion and damping of the waves and their inter-

action with an electron beam are discussed.

tAlso at the University of California, San Diego, La Jolla, California.
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II. EXPERIMENTAL PROCEDURE

The wave measurements are made in the following manner: Two radial

probes are placed in the plasma column. One probe is connected by coaxial

cable to a chopped signal generator. The other probe is connected to a

receiver which includes a sharp, high-frequency filter, a string of broad-

band amplifiers, an r-f detector, a video amplifier, and a coherent

detector operated at the transmitter chopping frequency. Provision is

made to add a reference signal from the transmitter to the receiver r-f

signal; i.e., we may use the system as an interferometer. The transmitter

is set at a series of fixed frequencies, and at each, the receiving probe

is moved longitudinally. The position of the receiving probe, which is

transduced, is applied to the x-axis of an x-y recorder, and the inter-

ferometer output or the logarithm of the received power is applied to the

y-axis.

Typical raw data for the lower branch wave are shown in Fig. i. The

slope of the power curve is the rate of power damping of the wave. The

distance between peaks on the interferometer curve is the wavelength. From

the measured wavelengths and the transmitter frequencies we obtain the dis-

persion relation of the waves. For comparison with theory, we compute the

dispersion relation for the wave numerically using the measured radial

density distribution, the plasma temperature measured by the velocity ana-

lyzer, and the experimental value of the magnetic field. We choose an

absolute density which normalizes the theory to the experimental dispersion
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data at low frequencies (high phase velocities). The observed dispersion

agrees to high precision with the theory. 3

The Landau damping of these waves has been reported in detail in a

2
previous paper. We there showed that they exhibit heavy exponential damp-

ing under conditions where collisional damping is negligible, that the

damping is caused by electrons traveling at the phase velocity of the wave,

and that the magnitude of the damping, its dependence on phase velocity,

and its dependence on plasma temperature, are accurately predicted by the

theory of Landau.

There are a double infinity of solutions for the lower branch corre-

sponding to various radial and angular eigenmodes. However, all higher

modes at a given frequency are very heavily damped compared with the lowest

mode, i.e., the one having angular symmetry and the simplest radial depend-

ence. Hence, when we apply a given frequency to the transmitting antenna,

only the lowest mode is observable a short distance away, and only its

properties are measured.

We have described the experimental work on the lower branch waves

because it demonstrates the power of the second order theory for explaining

the dispersion and damping of the waves. The situation is substantially

more complicated for the upper branch case. This is not because of addi-

tional terms in the equation, but because the eigenvalue equation at some

radius is almost singular for the upper branch waves.

i00



III. UPPERBRANCHDATA

In Fig. 2, a typical result for waves near the electron cyclotron fre-

quency, for one set of plasma parameters, is reproduced from a previous paper. 5

The measurementof dispersion and especially of damping in that experiment

was greatly complicated by the fact that more than one wave appeared at a

given frequency. Thus we observed, whenthe transmitter was set at a given

frequency, not an almost sinusoidal waveas in Fig. i, but an interference

pattern that had to be unscrambled. Also, the identity of all the waves

near the cyclotron frequency was not firmly established. Wehave now estab-

lished that the wave with one branch below and one above the cyclotron fre-

quency, with phase velocity asymptotic to the velocity of light at low and

high frequencies, is a plasma-perturbed electromagnetic mode, similar to a

whistler. The tube surrounding the plasma is a waveguide beyond cutoff for

these frequencies except slightly below the cyclotron frequency, where the

refractive index becomeslarge. However, the tube is slotted to permit

movementof the probe, and thus the waves are coupled through the slot into

the 2 ft diam main chamberof the machine, which is not cut off. This is

not the wave in which we are most interested, so to remove this interference

we completely closed the slot associated with one of the probes and installed

a large amount of damping material in the chamberproper. This seemsto

effectively remove this high-phase-velocity wave. The wave labelled TEll

in Fig. 2 is the whistler, which is still observed, as shownin Fig. 3. The

other wave between the cyclotron frequency and the plasma frequency in

i01
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Fig. 2 seemsto be associated with a resonance of the remaining slot, load-

ed by the plasma. The wave appears when the length of the slot from its

end to where it is shorted by the probe carriage is m half wavelengths

for the wave. To reduce this effect, we have covered part of the slot with

an absorbing material which tends to dampout the slot resonance.

The changes in the machine geometry also modified the upper branch

cyclotron wavedispersion. Thesemodifications changed the effective bound-

ary condition for the waves, and they appear to makethe upper branch cyclo-

tron wavemuchmore heavily damped. This may be associated with the fact

that the singularity makes it difficult for the wave to find the eigenmode

of the system which matches the boundary condition at the wall and still be-

haves properly at the singularity. The measureddispersion now shows evi-

dence of a great manymodes. Large, and often discontinuous_changes in

wavelength result from small changes in frequency or density. The wave

transmission thus is muchmore sensitive to noisy density fluctuations than

are the lower branch waves. Severe phase scrambling (phase fluctuations of

> w/2) makeinterferometer measurementsof the wavelength difficult. In some

portions of the frequency spectrum, the frequency of the transmitted wave

becomesbroadened or shifted by as muchas 20_0, presumably due to side-

bands introduced by the large phase and amplitude modulations. The meas-

ured damping seemsto be associated with both a scattering of energy from

the initial frequency band into sidebands and spatial collisionless damping.

A second difficulty in analyzing the data of Fig. 2 is that the density

of the plasma was not uniform in the z-direction. This is muchmore serious

for the upper branch wavesthan for the lower branch because the observable

wavelengths are much longer and hence span a greater variation in plasma
6

density. The experiments on cusp injection were motivated by a desire
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to reduce the density gradient and in a large measurewere successful. The

second series of measurementson the upper branch (Figs. 3, 4) used the

flattened density distribution obtained with the cusp configuration. Uith

the improved density profile, we have madedamping measurementson the

cyclotron waves. The observed dampingis given in Fig. 4. Wehave also

observed the growth of these waves induced by a beam. Whenan electron

beamof a few microamperes and i to 3 kV energy is injected into the

plasma, a strong noise spectrum is observed at about 450 Mc even when

the transmitter is off. This is close to the upper hybrid frequency for

the parameters used and is presumably due to waves at the intersection of

the dispersion curve of the beamand the dispersion curve for the cyclotron

wave growing up from low level noise in the plasma. The frequency at which

the waves grow is a weak function of beamvelocity as expected.

Using somewhatlower beamenergies,we observed growing waves from

signals injected at discreet frequencies by the transmitting probe. These

waves were seen to grow exponentially in space over several e-folds in

the upstream direction, somewhatin the way that waves grow in the l)wer

_ranch. In the downstreamdirection the growth is not exponential, l_ut

seemsto demonstrate a start-oscillation condition as a certain beamcur-

rent density is exceeded, much in the manner of a backward-waveoscillator,

except that the oscillation ceases whenthe driving wave is removed. Because

the wavelengths are long, the standing waves and feedback effects have made

dispersion measurementsvery difficult. However, the few unambiguousresults

show the sametrends as in the absenceof the beam, namely that the inter-

action seemsto be with a variety of modesrather than with a single one.

The presence of a

as 20 to 30 dB.

50 _A beammay increase the wave amplitude by as much
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The growing noise at 450 Mc may provide a convenient measurement of

the hybrid frequency and thus the plasma density. Since the plasma density

is a function of radius, and since the beam is much smaller than the plasma,

the waves may be well localized and thus measure the local density of the

plasma.

After studying the data, of which Figs. 2, 37 and 4 are a sample, we

decided to close the probe slots completely. Two thin beryllium-copper

springs were affixed to the tube surrounding the plasma near each slot for

the full length of the machine. In their normal positions they touch, clos-

ing the slot electrically. As the probe advances the spring is pushed out

of the way but closes again behind it. The dispersion measurements were

then repeated. The result for a series of arc currents is shown in Fig. 5.

For the settings of the duoplasmatron used in this case, the major effect

of increasing arc current is to increase the plasma density approximately

proportionally. The lower branch dispersion curves are completely normal,

as is their variation with plasma density. However, the waves around the

cyclotron frequency (350 MHz) have completely changed character. In the

region 350 MHz to 380 MHz some of the previously observed waves may

still be present_ but the interferometer data are now so confused in this

region that reliable values of wavelength may no longer be extracted from

the curves. Above 390 MHz a new wave has appeared. The quality of the

interferometer data for this wave is excellent - just as good as that ex-

hibited in Fig. i for the lower branch waves. The dispersion looks a bit

like cyclotron waves on a drifting beam, especially for the highest currents,

and we have seen this kind of dispersion when a low velocity electron beam

is injected into the plasma. Howeve_ this explanation of the data is not

correct: In the beam experiments the dispersion is always a perfectly
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straight line which extrapolates to the cyclotron frequency at k = O. The

dispersion curves for these data are not straight lines and the upper parts

of the curves do not extrapolate to the cyclotron frequency. In addition,

we would not expect the geometric changes made to result in a low velocity

beam in the plasma.

The interaction between this wave and a 15OO V, _ 0.2 ma electron

beam injected into the plasma has been measured. The dispersion of the

combined beam-plasma system is shown in Fig. 6. Wave growth is also

observed under these circumstances. The dispersion for the beam-plasma

system is in quantitative agreement with the theory of Pearlstein and

Bhadra. 7 The precision of their WKBJ analysis is not sufficiently good

for the lowest radial mode to allow a detailed quanitative comparison. The

qualitative comparison is discussed in their paper.

The second order theory predicts that the upper branch eventually be-

comes a forward wave even in a uniform density system when the thermal

corrections get large enough. However, extensive numerical calculations

using our actual density profile failed to find any set of parameters for

which such a wave existed without being much more heavily damped than the

experimentally observed result. The best explanation of the data appears

to be the fourth order theory of Pearlstein and Bhadra. This would imply

that the dispersion of the forward wave is dominated by the "almost singular"

behavior at the radius for which the wave frequency equals the local hybrid

frequency.
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t
Curve Resolver for Mixtures of Damped Sine Waves

C. D. Moore and J. H. Malmberg

Gulf General Atomic,Incorporated

P. O. Box 608

San Diego, California 92112

A system for analyzing waveforms consisting of mixtures

of exponentially damped sine waves is described. The instru-

ment generates a series of damped sine waves of variable ampli-

tude, frequency, damping decrement, and phase. These wave-

forms are added and displayed on an oscilloscope. Their

parameters can then be adjusted to obtain a waveform which

matches the curve to be analyzed. The component waveforms

are then analyzed one at a time. The instrument has been

used to analyze interferometer curves arising in the course

of plasma wave experiments.

tThis work was sponsored by the National Aeronautics and

Space Administration under Contract NAS7-275.

$Also at the University of California, San Diego, La Jolla,

California.
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I

INTRODUCTION

In manyexperiments, the data are obtained in the form of a curve

which is the sumof two or more simpler functions. The curve must be re-

duced to its componentparts to be interpreted. In the particular case

which led to the development of the present instrument, the composite

curve is a sumof two or more exponentially dampedsine waves with inde-

pendent amplitudes, frequencies, damping rates, and phase. Suchcurves are

generated in the application of radio-frequency interferometer techniques
i

to the measurementsof plasma wave propagation whentwo or more modes at

the samefrequency, but with different wavelengths, are present in the

plasma. The interferometer circuitry converts the signals to a curve

l(z) vs z, where z is the position in the plasma and l(z) is of the

form

I(z) : Z Ai exp(-@iz)sin(kiz+qo i)
i

(1)

The problem is to extract the amplitudes, A i, damping constants, _i'

wave numbers, ki, and phases, _i' from the composite curve.

The most obvious method of extracting the parameters from the data

is to digitize l(z) vs z and do least squares calculation on a computer,

but this method has disadvantages. The equipment for digitizing a waveform

normally available only graphically and the necessity for writing a moder-

ately complicated code do not present severe problems. However, with the
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usual arrangements, some hours elapse between submission of the problem and

return of the computer answer, so the results are not immediately available

during the course of the experiment. In addition, the curve fitting is

strictly mathematical: the experimenter cannot easily apply his judgment

to the curve fitting in order to allow for non-ideal characteristics of

the system under test. Graphical analysis of the curves is practical in

simple cases, but is not sufficiently precise for the present experiment

and is very involved in complicated cases. Another system is to store the

data waveform on a rotating loop of magnetic tape and analyze the frequency

spectrum of the output. This method lacks accuracy and is further com-

plicated by the generation of extraneous frequencies due to the periodicity

of the output associated with the rotation frequency.

The instrument here described generates an oscilloscope display which

can be adjusted to match the original data. The synthesized waveform is

the algebraic sum of up to three independent damped sine waves whose fre-

quency, amplitude, damping rate, and phase are independently varied by ad-

justing the parameters of the gated LCR circuits producing them. The

component waves are phase locked to present a static scope display, but

their relative phase may be varied. The oscilloscope display is viewed

through a tranparent tracing of the original data taped directly to the

CRT tube. The parameters of the required number of waves are then varied

to produce a best fit to the data. Polaroid photographs of the synthesized

waveform and its components can then be made to serve as permanent records.
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II

CIRCUIT DESCRIPTION

For this circuit, the problem is the generation of the component sine

waves which must have individually variable frequency, amplitude, and damp-

ing rate. Their collective phase relation must be variable and coherent.

Once the component waves have been generated, the complex waveform is

obtained by algebraic addition with an operational amplifier. The wave-

forms must be generated at a rate convenient for viewing purposes, but

otherwise the frequency range may be chosen with regard to circuit consid-

erations. There are a variety of schemes for generating such waveforms

including, for example, providing phase lock and exponentially variable

gain to the required number of tunable CW oscillators. A simpler method

is to abruptly gate off the current flowing through a parallel LCR circuit.

If the "OFF" impedance of the gate is very high, an exponentially damped

sine wave whose parameters are completely determined by the values of L,

C, and R is generated. (The resistance of the inductor contributes

to R.)

A functional diagram of the instrument is given in Fig. i and the

circuit diagram for one channel is given in Fig. 2. Referring to these

figures, a typical generation cycle proceeds as follows: Transistor Q3

is normally on, allowing current to flow through LI (or 12 as selected

for frequency range). A sawtooth voltage from the oscilloscope sweep out-

put is fed to a Schmitt trigger circuit, QI and Q3, via potentiometer R2,

to establish a delay time from start of the sweep. Firing of the trigger

ii8



._I .J ._I

LIJ l,l LiJ

Z Z Z

Z Z Z

"I- I "1-
0 0 0

0

-p

cH
0

bO

.H

o
.;.-I
..i.3

I

!

._t

]-]-9



4.7K
INPUT R1

OFF •

120V'_

CW

PHASe

TO CHANNELS
NO. 2 & 3

FI TI

NE-51 Fb,OX
TR ! AD

OFF -12V

SI-A

POWER SUPPLY FOR
CHANNELS NO. 1,2 & 3

R18
8OO,OJ!/ 2W

25V '05

+ 'o+
270,_,/I W

I ,3K IK, C2
R R7 R9'.

27K :25K
RIO "R12

QI

2hO_
R6

OFF

SI-B +12V

I gw

lM

2W

OUTPUT

FROM CHANNELS NO. 2 & 3

SCHEMATIC CHANNEL
NO. I (NO.'s 2 & 3
IDENTICAL)

CURVE RESOLVER

OFF

LI L2

200

FREQ.
RANGE

D1,2,3,4 = IN4OO5

05,D6 - IN4740

QI,2 - 2NI304

Q3,4 -U148 (SILICONIX FET)

C3 CW

5-460PF EA

FREQ.
TUNE

DAMPING
RATE

Fig. 2--Schematic diagram of one channel of the curve resolver

120



circuit applies a steep negative going step signal to the gate input of

Q3, abruptly cutting off the current flow to LI, and initiating the

characteristic damped sine wave of the simple parallel LCR "tank" circuit.

The initial voltage value of the generated wave is essentially zero and the

initial phase is at zero-crossing. The output voltage signal across the

LCR circuit is coupled through the buffer amplifier Q4 and gain potenti_n-

eter RI4 to the vertical amplifier of the oscilloscope. To sum the sig-

nals from several channels,we use a Tektronix Type "0" operational ampli-

fier connected in the differentiating mode. This configuration eliminates

the D.C. pedestal voltage component of the buffer amplifiers before sum-

ming. The gain potentiometers of the individual channels then become the

weighting functions (Zin) of the operational amplifier summing circuit.

In order to generate lightly damped waveforms it is necessary that the

unloaded Q of the LCR circuit be as high as possible. Ferrite toroidal

core inductors were found to exhibit the best values of Q for the in-

ductance range involved. Transistors Q3 and Q4 were chosen from FET

types because of the high impedance characteristics of such devices. Q3

and Q4 are both shunt loads on the LCR circuit. Both devices exhibit

shunt resistances in excess of 5 M_ during the ringing time of the tank

circuit. Measurement of the output of individual channels show that they

are, very accurately, exponentially damped sine waves.

Figure 3a is an interferogram of a multiple-mode plasma wave and is

typical of the data to be analyzed. An example of the circuit performance

is exhibited in Fig. 3b. The circuit parameters have been adjusted to

match the data shown in Fig. 3a. Comparison of the figures shows that a

good fit has been obtained. The waveform of Fig. 3b is composed of three
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Fig. 3--Curve A is a interferogram of a multiple-mode plasma wave.

Curve B is the combination waveform from the curve resolver.

Curves C, D, and E are the individual components of Curve B
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waves shown individually in Figs. 3c, 3d, and 3e. Each of these waves may

be separately observed, photographed, and analyzed by turning off the other

oscillator channels.
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III

DISCUSSION

A question that naturally arises is whether the tuning converges rapid-

ly. Even with only two component waves, this circuit has eight control

parameters: i.e., the amplitude, frequency, damping, and phase of each

channel. We have fotmd that after a little practice at twisting the knobs,

the data can be fit rapidly and accurately. Use of the device also rapidly

educates the experimenter to recognize the probable components of waveforms

which are rather complicated at first glance. A perfect fit to the data is

not usually obtained. The residual discrepancies are not due to errors in

the synthesized curve, but are caused by systematic experimental errors

(i.e., a spatial variation in plasma density) which distort the data. An

important advantage of the present method is that the experimenter can

evaluate the importance of various distortions during the analysis and fit

the data accordingly.

Channels to generate other types of functions could be added if re-

quired by the nature of the data.
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