309 research outputs found
Spectrum for the electric dipole which nonradially falling into a black hole
The electromagnetic bremsstrahlung spectrum for the dipole which falling by a
spiral orbit into the Schwarzschild black hole was found. The characteristic
features in this electromagnetic spectrum can be used for determine of the
black hole mass by the new way. This new way (if implemented) provides higher
accuracy in determining of the black hole mass. Also these features in the
spectrum can be used for determine of the certain characteristics in the black
hole magnetosphere or in the accretion disk characteristics around the black
hole. It is also shown that the asymptotic behavior of this spectrum (at high
frequencies) is practically independent from the impact parameter of the
falling dipole.Comment: 15 pages, 3 figures. To appear in IJMPD, 201
Constructive control of quantum systems using factorization of unitary operators
We demonstrate how structured decompositions of unitary operators can be
employed to derive control schemes for finite-level quantum systems that
require only sequences of simple control pulses such as square wave pulses with
finite rise and decay times or Gaussian wavepackets. To illustrate the
technique it is applied to find control schemes to achieve population transfers
for pure-state systems, complete inversions of the ensemble populations for
mixed-state systems, create arbitrary superposition states and optimize the
ensemble average of dynamic observables.Comment: 28 pages, IoP LaTeX, principal author has moved to Cambridge
University ([email protected]
Coherent control using adaptive learning algorithms
We have constructed an automated learning apparatus to control quantum
systems. By directing intense shaped ultrafast laser pulses into a variety of
samples and using a measurement of the system as a feedback signal, we are able
to reshape the laser pulses to direct the system into a desired state. The
feedback signal is the input to an adaptive learning algorithm. This algorithm
programs a computer-controlled, acousto-optic modulator pulse shaper. The
learning algorithm generates new shaped laser pulses based on the success of
previous pulses in achieving a predetermined goal.Comment: 19 pages (including 14 figures), REVTeX 3.1, updated conten
Coherent population transfer in a chain of tunnel coupled quantum dots
We consider the dynamics of a single electron in a chain of tunnel coupled
quantum dots, exploring the formal analogies of this system with some of the
laser-driven multilevel atomic or molecular systems studied by Bruce W. Shore
and collaborators over the last 30 years. In particular, we describe two
regimes for achieving complete coherent transfer of population in such a
multistate system. In the first regime, by carefully arranging the coupling
strengths, the flow of population between the states of the system can be made
periodic in time. In the second regime, by employing a "counterintuitive"
sequence of couplings, the coherent population trapping eigenstate of the
system can be rotated from the initial to the final desired state, which is an
equivalent of the STIRAP technique for atoms or molecules. Our results may be
useful in future quantum computation schemes
Electronic structure of nuclear-spin-polarization-induced quantum dots
We study a system in which electrons in a two-dimensional electron gas are
confined by a nonhomogeneous nuclear spin polarization. The system consists of
a heterostructure that has non-zero nuclei spins. We show that in this system
electrons can be confined into a dot region through a local nuclear spin
polarization. The nuclear-spin-polarization-induced quantum dot has interesting
properties indicating that electron energy levels are time-dependent because of
the nuclear spin relaxation and diffusion processes. Electron confining
potential is a solution of diffusion equation with relaxation. Experimental
investigations of the time-dependence of electron energy levels will result in
more information about nuclear spin interactions in solids
Momentum transfer using chirped standing wave fields: Bragg scattering
We consider momentum transfer using frequency-chirped standing wave fields.
Novel atom-beam splitter and mirror schemes based on Bragg scattering are
presented. It is shown that a predetermined number of photon momenta can be
transferred to the atoms in a single interaction zone.Comment: 4 pages, 3 figure
Anharmonicity, vibrational instability and Boson peak in glasses
We show that a {\em vibrational instability} of the spectrum of weakly
interacting quasi-local harmonic modes creates the maximum in the inelastic
scattering intensity in glasses, the Boson peak. The instability, limited by
anharmonicity, causes a complete reconstruction of the vibrational density of
states (DOS) below some frequency , proportional to the strength of
interaction. The DOS of the new {\em harmonic modes} is independent of the
actual value of the anharmonicity. It is a universal function of frequency
depending on a single parameter -- the Boson peak frequency, which
is a function of interaction strength. The excess of the DOS over the Debye
value is at low frequencies and linear in in the
interval . Our results are in an excellent
agreement with recent experimental studies.Comment: LaTeX, 8 pages, 6 figure
Interaction of quasilocal harmonic modes and boson peak in glasses
The direct proportionality relation between the boson peak maximum in
glasses, , and the Ioffe-Regel crossover frequency for phonons,
, is established. For several investigated materials . At the frequency the mean free path of the
phonons becomes equal to their wavelength because of strong resonant
scattering on quasilocal harmonic oscillators. Above this frequency phonons
cease to exist. We prove that the established correlation between
and holds in the general case and is a direct consequence of
bilinear coupling of quasilocal oscillators with the strain field.Comment: RevTex, 4 pages, 1 figur
The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots
During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots
- …
