2,603 research outputs found

    A New Survey for Giant Arcs

    Get PDF
    We report on the first results of an imaging survey to detect strong gravitational lensing targeting the richest clusters selected from the photometric data of the Sloan Digital Sky Survey (SDSS) with follow-up deep imaging observations from the Wisconsin Indiana Yale NOAO (WIYN) 3.5m telescope and the University of Hawaii 88-inch telescope (UH88). The clusters are selected from an area of 8000 deg^2 using the Red Cluster Sequence technique and span the redshift range 0.1 < z < 0.6, corresponding to a comoving cosmological volume of ~ 2 Gpc^3. Our imaging survey thus targets a volume more than an order of magnitude larger than any previous search. A total of 240 clusters were imaged of which 141 had sub-arcsecond image quality. Our survey has uncovered16 new lensing clusters with definite giant arcs, an additional 12 systems for which the lensing interpretation is very likely, and 9 possible lenses which contain shorter arclets or candidate arcs which are less certain and will require further observations to confirm their lensing origin. The number of new cluster lenses detected in this survey is likely > 30. Among these new systems are several of the most dramatic examples of strong gravitational lensing ever discovered with multiple bright arcs at large angular separation. These will likely become 'poster-child' gravitational lenses similar to Abell 1689 and CL0024+1654. The new lenses discovered in this survey will enable future sysetmatic studies of the statistics of strong lensing and its implications for cosmology and our structure formation paradigm.Comment: 19 pages, 7 pages of Figures, submitted to AJ. Fixed Typo

    Think Outside the Color Box: Probabilistic Target Selection and the SDSS-XDQSO Quasar Targeting Catalog

    Full text link
    We present the SDSS-XDQSO quasar targeting catalog for efficient flux-based quasar target selection down to the faint limit of the Sloan Digital Sky Survey (SDSS) catalog, even at medium redshifts (2.5 <~ z <~ 3) where the stellar contamination is significant. We build models of the distributions of stars and quasars in flux space down to the flux limit by applying the extreme-deconvolution method to estimate the underlying density. We convolve this density with the flux uncertainties when evaluating the probability that an object is a quasar. This approach results in a targeting algorithm that is more principled, more efficient, and faster than other similar methods. We apply the algorithm to derive low-redshift (z < 2.2), medium-redshift (2.2 <= z 3.5) quasar probabilities for all 160,904,060 point sources with dereddened i-band magnitude between 17.75 and 22.45 mag in the 14,555 deg^2 of imaging from SDSS Data Release 8. The catalog can be used to define a uniformly selected and efficient low- or medium-redshift quasar survey, such as that needed for the SDSS-III's Baryon Oscillation Spectroscopic Survey project. We show that the XDQSO technique performs as well as the current best photometric quasar-selection technique at low redshift, and outperforms all other flux-based methods for selecting the medium-redshift quasars of our primary interest. We make code to reproduce the XDQSO quasar target selection publicly available

    Discovery of Four Gravitationally Lensed Quasars from the Sloan Digital Sky Survey

    Full text link
    We present the discovery of four gravitationally lensed quasars selected from the spectroscopic quasar catalog of the Sloan Digital Sky Survey. We describe imaging and spectroscopic follow-up observations that support the lensing interpretation of the following four quasars: SDSS J0832+0404 (image separation \theta=1.98", source redshift z_s=1.115, lens redshift z_l=0.659); SDSS J1216+3529 (\theta=1.49", z_s=2.012); SDSS J1322+1052 (\theta=2.00", z_s=1.716); and SDSS J1524+4409 (\theta=1.67", z_s=1.210, z_l=0.320). Each system has two lensed images. We find that the fainter image component of SDSS J0832+0404 is significantly redder than the brighter component, perhaps because of differential reddening by the lensing galaxy. The lens potential of SDSS J1216+3529 might be complicated by the presence of a secondary galaxy near the main lensing galaxy.Comment: 25 pages, 10 figures, 6 tables, accepted for publication in A

    The Impact of Temporal Geopotential Variations on GPS

    Get PDF
    Lemoine et al. (2006) and Lemoine et al. (2010) showed that applying more detailed models of time-variable gravity (TVG) improved the quality of the altimeter satellite orbits (e.g. TOPEX/Poseidon, Jason-1, Jason-2). This modeling include application of atmospheric gravity derived from 6-hrly pressure fields obtained from the ECMWF and annual gravity variations to degree & order 20x20 in spherical harmonics derived from GRACE data. This approach allowed the development of a consistent geophysical model for application to altimeter satellite orbit determination from 1993 to 2011. In addition, we have also evaluated the impact of TVG modeling on the POD of Jason-1 and Jason-2 by application of a weekly degree & order four gravity coefficient time series developed using data from ten SLR & DORIS-tracked satellites from 1993 to 2011 (Lemoine et al., 2011)

    A Simple Likelihood Method for Quasar Target Selection

    Full text link
    We present a new method for quasar target selection using photometric fluxes and a Bayesian probabilistic approach. For our purposes we target quasars using Sloan Digital Sky Survey (SDSS) photometry to a magnitude limit of g=22. The efficiency and completeness of this technique is measured using the Baryon Oscillation Spectroscopic Survey (BOSS) data, taken in 2010. This technique was used for the uniformly selected (CORE) sample of targets in BOSS year one spectroscopy to be realized in the 9th SDSS data release. When targeting at a density of 40 objects per sq-deg (the BOSS quasar targeting density) the efficiency of this technique in recovering z>2.2 quasars is 40%. The completeness compared to all quasars identified in BOSS data is 65%. This paper also describes possible extensions and improvements for this techniqueComment: Updated to accepted version for publication in the Astrophysical Journal. 10 pages, 10 figures, 3 table

    Novel cyclic di-GMP effectors of the YajQ protein family control bacterial virulence

    Get PDF
    Bis-(3 ',5 ') cyclic di-guanylate (cyclic di-GMP) is a key bacterial second messenger that is implicated in the regulation of many critical processes that include motility, biofilm formation and virulence. Cyclic di-GMP influences diverse functions through interaction with a range of effectors. Our knowledge of these effectors and their different regulatory actions is far from complete, however. Here we have used an affinity pull-down assay using cyclic di-GMP-coupled magnetic beads to identify cyclic di-GMP binding proteins in the plant pathogen Xanthomonas campestris pv. campestris (Xcc). This analysis identified XC_3703, a protein of the YajQ family, as a potential cyclic di-GMP receptor. Isothermal titration calorimetry showed that the purified XC_3703 protein bound cyclic di-GMP with a high affinity (K-d similar to 2 mu M). Mutation of XC_3703 led to reduced virulence of Xcc to plants and alteration in biofilm formation. Yeast two-hybrid and far-western analyses showed that XC_3703 was able to interact with XC_2801, a transcription factor of the LysR family. Mutation of XC_2801 and XC_3703 had partially overlapping effects on the transcriptome of Xcc, and both affected virulence. Electromobility shift assays showed that XC_3703 positively affected the binding of XC_2801 to the promoters of target virulence genes, an effect that was reversed by cyclic di-GMP. Genetic and functional analysis of YajQ family members from the human pathogens Pseudomonas aeruginosa and Stenotrophomonas maltophilia showed that they also specifically bound cyclic di-GMP and contributed to virulence in model systems. The findings thus identify a new class of cyclic di-GMP effector that regulates bacterial virulence

    The Sloan Digital Sky Survey Quasar Lens Search. IV. Statistical Lens Sample from the Fifth Data Release

    Full text link
    We present the second report of our systematic search for strongly lensed quasars from the data of the Sloan Digital Sky Survey (SDSS). From extensive follow-up observations of 136 candidate objects, we find 36 lenses in the full sample of 77,429 spectroscopically confirmed quasars in the SDSS Data Release 5. We then define a complete sample of 19 lenses, including 11 from our previous search in the SDSS Data Release 3, from the sample of 36,287 quasars with i<19.1 in the redshift range 0.6<z<2.2, where we require the lenses to have image separations of 1"<\theta<20" and i-band magnitude differences between the two images smaller than 1.25 mag. Among the 19 lensed quasars, 3 have quadruple-image configurations, while the remaining 16 show double images. This lens sample constrains the cosmological constant to be \Omega_\Lambda=0.84^{+0.06}_{-0.08}(stat.)^{+0.09}_{-0.07}(syst.) assuming a flat universe, which is in good agreement with other cosmological observations. We also report the discoveries of 7 binary quasars with separations ranging from 1.1" to 16.6", which are identified in the course of our lens survey. This study concludes the construction of our statistical lens sample in the full SDSS-I data set.Comment: 37 pages, 2 figures and 5 tables, accepted to A

    Hubble Space Telescope Imaging of Lyman Alpha Emission at z=4.4

    Get PDF
    We present the highest redshift detections of resolved Lyman alpha emission, using Hubble Space Telescope/ACS F658N narrowband-imaging data taken in parallel with the Wide Field Camera 3 Early Release Science program in the GOODS CDF-S. We detect Lyman alpha emission from three spectroscopically confirmed z = 4.4 Lyman alpha emitting galaxies (LAEs), more than doubling the sample of LAEs with resolved Lyman alpha emission. Comparing the light distribution between the rest-frame ultraviolet continuum and narrowband images, we investigate the escape of Lyman alpha photons at high redshift. While our data do not support a positional offset between the Lyman alpha and rest-frame ultraviolet (UV) continuum emission, the half-light radii in two out of the three galaxies are significantly larger in Lyman alpha than in the rest-frame UV continuum. This result is confirmed when comparing object sizes in a stack of all objects in both bands. Additionally, the narrowband flux detected with HST is significantly less than observed in similar filters from the ground. These results together imply that the Lyman alpha emission is not strictly confined to its indigenous star-forming regions. Rather, the Lyman alpha emission is more extended, with the missing HST flux likely existing in a diffuse outer halo. This suggests that the radiative transfer of Lyman alpha photons in high-redshift LAEs is complicated, with the interstellar-medium geometry and/or outflows playing a significant role in galaxies at these redshifts.Comment: Submitted to the Astrophysical Journal. 11 pages, 10 figure
    corecore