680 research outputs found
A multiple replica approach to simulate reactive trajectories
A method to generate reactive trajectories, namely equilibrium trajectories
leaving a metastable state and ending in another one is proposed. The algorithm
is based on simulating in parallel many copies of the system, and selecting the
replicas which have reached the highest values along a chosen one-dimensional
reaction coordinate. This reaction coordinate does not need to precisely
describe all the metastabilities of the system for the method to give reliable
results. An extension of the algorithm to compute transition times from one
metastable state to another one is also presented. We demonstrate the interest
of the method on two simple cases: a one-dimensional two-well potential and a
two-dimensional potential exhibiting two channels to pass from one metastable
state to another one
Management of natural resources through automatic cartographic inventory
The author has identified the following significant results. Significant results of the ARNICA program (February - December 1973) were: (1) The quantitative processing of ERTS-1 data was developed along two lines: the study of geological structures and lineaments of Spanish Catalonia, and the phytogeographical study of the forest region of the Landes of Gascony (France). In both cases it is shown that the ERTS-1 imagery can be used in establishing zonings of equal quantitative interpretation value. (2) In keeping with the operational transfer program proposed in previous reports between exploration of the imagery and charting of the object, a precise data processing method was developed, concerning more particularly the selection of digital equidensity samples computer display and rigorous referencing
Stacking order dynamic in the quasi-two-dimensional dichalcogenide 1T-TaS probed with MeV ultrafast electron diffraction
Transitions between different charge density wave (CDW) states in
quasi-two-dimensional materials may be accompanied also by changes in the
inter-layer stacking of the CDW. Using MeV ultrafast electron diffraction, the
out-of-plane stacking order dynamics in the quasi-two-dimensional
dichalcogenide 1T-TaS is investigated for the first time. From the
intensity of the CDW satellites aligned around the commensurate = 1/6
characteristic stacking order, it is found out that this phase disappears with
a 0.5 ps time constant. Simultaneously, in the same experiment, the emergence
of the incommensurate phase, with a slightly slower 2.0 ps time constant, is
determined from the intensity of the CDW satellites aligned around the
incommensurate = 1/3 characteristic stacking order. These results might be
of relevance in understanding the metallic character of the laser-induced
metastable "hidden" state recently discovered in this compound
Delipidating in vitro-produced bovine zygotes: effect on further development and consequences for freezability
To study the effect of partial removal of intracytoplasmatic lipids from bovine zygotes on
their in vitro and in vivo survival, presumptive zygotes were delipidated by micromanipulation
and cocultured with Veto cells in B2+10% FCS. Blastocyst rates of delipidated (n=960), sham
(centrifuged but not delipidated, n=830) and control embryos (n=950) were 42.1, 42.3 and 39.9%
respectively (P > 0.05). Day 7 blastocysts derived from delipidated zygotes had a mean of 123.9
+ 45.6 nuclei compared to 137.5 + 32.9 for control blastocysts (P > 0.05). The full-term
development of delipidated blastocysts after single transfer to recipients was similar to that of
control IVF blastocysts (41.2% vs 45.4% respectively). To assess the effect of delipidation on
the embryo tolerance to freczing/thawing, delipidated (n=73), control (n=67) and shmn (n=50)
Day 7 blastocysts were frozen in 1.36 M glycerol + 0.25 M sucrose in PBS. After thawing,
embryos were cocultured for 72 h with Vero cells in B2+10% FCS. Survival rates at 24 h were
not significantly different between groups. However, in the delipidated group, the survival rate
after 48 h in culture was significantly higher than in the control group (56.2 vs 39.8, P < 0.02),
resulting in a higher hatching rate after 3 days in culture (45.2 vs 22.4, P < 0.02). Pregnancy rates
for delipidated and control frozen/thawed embryos were respectively 10.5 and 22.2% (P > 0.05).
Electron microscopic observations showed much fewer lipid droplets (and smaller) in delipated
blastocysts than in controls. Taken together, our data show that delipidation of one cell stage
bovine embryos is compatible with their normal development to term and has a beneficial effect
on their tolerance to freezing and thawing at the blastocyst stage. This procedure, however, alters
the developmental potential of such blastocysts, suggesting that maternally inherited lipid stores
interfere with metabolic recovery after thawing
Emergent dynamic chirality in a thermally driven artificial spin ratchet
Modern nanofabrication techniques have opened the possibility to create novel functional materials, whose properties transcend those of their constituent elements. In particular, tuning the magnetostatic interactions in geometrically frustrated arrangements of nanoelements called artificial spin ice1, 2 can lead to specific collective behaviour3, including emergent magnetic monopoles4, 5, charge screening6, 7 and transport8, 9, as well as magnonic response10, 11, 12. Here, we demonstrate a spin-ice-based active material in which energy is converted into unidirectional dynamics. Using X-ray photoemission electron microscopy we show that the collective rotation of the average magnetization proceeds in a unique sense during thermal relaxation. Our simulations demonstrate that this emergent chiral behaviour is driven by the topology of the magnetostatic field at the edges of the nanomagnet array, resulting in an asymmetric energy landscape. In addition, a bias field can be used to modify the sense of rotation of the average magnetization. This opens the possibility of implementing a magnetic Brownian ratchet13, 14, which may find applications in novel nanoscale devices, such as magnetic nanomotors, actuators, sensors or memory cells
Quantifying the effect of uncertainty in input parameters in a simplified bidomain model of partial thickness ischaemia
Reduced blood flow in the coronary arteries can lead to damaged heart tissue (myocardial ischaemia). Although one method for detecting myocardial ischaemia involves changes in the ST segment of the electrocardiogram, the relationship between these changes and subendocardial ischaemia is not fully understood. In this study, we modelled ST-segment epicardial potentials in a slab model of cardiac ventricular tissue, with a central ischaemic region, using the bidomain model, which considers conduction longitudinal, transverse and normal to the cardiac fibres. We systematically quantified the effect of uncertainty on the input parameters, fibre rotation angle, ischaemic depth, blood conductivity and six bidomain conductivities, on outputs that characterise the epicardial potential distribution. We found that three typical types of epicardial potential distributions (one minimum over the central ischaemic region, a tripole of minima, and two minima flanking a central maximum) could all occur for a wide range of ischaemic depths. In addition, the positions of the minima were affected by both the fibre rotation angle and the ischaemic depth, but not by changes in the conductivity values. We also showed that the magnitude of ST depression is affected only by changes in the longitudinal and normal conductivities, but not by the transverse conductivities
Production of Mesons in the Reaction at 3.67 GeV/c
The ratio of the total exclusive production cross sections for
and mesons has been measured in the reaction at
GeV/c. The observed ratio is
from which the exclusive
meson production cross section is determined to be
. Differential cross section
distributions have been measured. Their shape is consistent with isotropic
meson production.Comment: 14 pages, 5 figures, accepted by Phys.Lett.
Reticular dysgenesis-associated AK2 protects hematopoietic stem and progenitor cell development from oxidative stress.
Adenylate kinases (AKs) are phosphotransferases that regulate the cellular adenine nucleotide composition and play a critical role in the energy homeostasis of all tissues. The AK2 isoenzyme is expressed in the mitochondrial intermembrane space and is mutated in reticular dysgenesis (RD), a rare form of severe combined immunodeficiency (SCID) in humans. RD is characterized by a maturation arrest in the myeloid and lymphoid lineages, leading to early onset, recurrent, and overwhelming infections. To gain insight into the pathophysiology of RD, we studied the effects of AK2 deficiency using the zebrafish model and induced pluripotent stem cells (iPSCs) derived from fibroblasts of an RD patient. In zebrafish, Ak2 deficiency affected hematopoietic stem and progenitor cell (HSPC) development with increased oxidative stress and apoptosis. AK2-deficient iPSCs recapitulated the characteristic myeloid maturation arrest at the promyelocyte stage and demonstrated an increased AMP/ADP ratio, indicative of an energy-depleted adenine nucleotide profile. Antioxidant treatment rescued the hematopoietic phenotypes in vivo in ak2 mutant zebrafish and restored differentiation of AK2-deficient iPSCs into mature granulocytes. Our results link hematopoietic cell fate in AK2 deficiency to cellular energy depletion and increased oxidative stress. This points to the potential use of antioxidants as a supportive therapeutic modality for patients with RD
- …
