7,022 research outputs found
Factors affecting continued use of ceramic water purifiers distributed to Tsunami-affected Communities in Sri Lanka
Objectives There is little information about continued use of point-of-use technologies after disaster relief efforts. After the 2004 tsunami, the Red Cross distributed ceramic water filters in Sri Lanka. This study determined factors associated with filter disuse and evaluate the quality of household drinking water. Methods A cross-sectional survey of water sources and treatment, filter use and household characteristics was administered by in-person oral interview, and household water quality was tested. Multivariable logistic regression was used to model probability of filter non-use. Results At the time of survey, 24% of households (107/452) did not use filters; the most common reason given was breakage (42%). The most common household water sources were taps and wells. Wells were used by 45% of filter users and 28% of non-users. Of households with taps, 75% had source water Escherichia coli in the lowest World Health Organisation risk category (<1/100 ml), vs. only 30% of households reporting wells did. Tap households were approximately four times more likely to discontinue filter use than well households. Conclusion After 2 years, 24% of households were non-users. The main factors were breakage and household water source; households with taps were more likely to stop use than households with wells. Tap water users also had higher-quality source water, suggesting that disuse is not necessarily negative and monitoring of water quality can aid decision-making about continued use. To promote continued use, disaster recovery filter distribution efforts must be joined with capacity building for long-term water monitoring, supply chains and local production
Accuracy and Responsiveness of CPU Sharing Using Xen's Cap Values
The accuracy and responsiveness of the Xen CPU Scheduler is evaluated using the "cap value" mechanism provided by Xen. The goal of the evaluation is to determine whether state-of-the-art virtualization technology, and in particular Xen, enables CPU sharing that is sufficiently accurate and responsive for the purpose of enabling "flexible resource allocations" in virtualized cluster environments
Quantum-mechanical calculations of the stabilities of fluxional isomers of C_4H_7^+ in solution
Although numerous quantum calculations have been made over the years of the stabilities of the fluxional isomers of C4H7+, none have been reported for other than the gas phase (which is unrealistic for these ionic species) that exhibit exceptional fluxional properties in solution. To be sure, quantum-mechanical calculations for solutions are subject to substantial uncertainties, but nonetheless it is important to see whether the trends seen for the gas-phase C4H7+ species are also found in calculations for polar solutions. Of the C4H7+ species, commonly designated bisected-cyclopropylcarbinyl 1, unsym-bicyclobutonium-2, sym-bicyclobutonium 3, allylcarbinyl 4, and pyramidal structure 6, the most advanced gas-phase calculations available thus far suggest that the order of stability is 1 ≥ 2 ≥ 3 >> 4 >> 6 with barriers of only ~1 kcal/mol for interconversions among 1, 2, and 3. We report here that, when account is taken of solvation, 2 turns out to be slightly more stable than 1 or 3 in polar solvents. The pattern of the overall results is unexpected, in that despite substantial differences in structures and charge distributions between the primary players in the C4H7+ equilibria and the large differences in solvation energies calculated for the solvents considered, the differential solvent effects from species to species are rather small
Resource Allocation using Virtual Clusters
In this report we demonstrate the utility of resource allocations that use virtual machine technology for sharing parallel computing resources among competing users. We formalize the resource allocation problem with a number of underlying assumptions, determine its complexity, propose several heuristic algorithms to find near-optimal solutions, and evaluate these algorithms in simulation. We find that among our algorithms one is very efficient and also leads to the best resource allocations. We then describe how our approach can be made more general by removing several of the underlying assumptions
Modeling the gamma-ray emission produced by runaway cosmic rays in the environment of RX J1713.7-3946
Diffusive shock acceleration in supernova remnants is the most widely invoked
paradigm to explain the Galactic cosmic ray spectrum. Cosmic rays escaping
supernova remnants diffuse in the interstellar medium and collide with the
ambient atomic and molecular gas. From such collisions gamma-rays are created,
which can possibly provide the first evidence of a parent population of runaway
cosmic rays. We present model predictions for the GeV to TeV gamma-ray emission
produced by the collisions of runaway cosmic rays with the gas in the
environment surrounding the shell-type supernova remnant RX J1713.7-3946. The
spectral and spatial distributions of the emission, which depend upon the
source age, the source injection history, the diffusion regime and the
distribution of the ambient gas, as mapped by the LAB and NANTEN surveys, are
studied in detail. In particular, we find for the region surrounding RX
J1713-3946, that depending on the energy one is observing at, one may observe
startlingly different spectra or may not detect any enhanced emission with
respect to the diffuse emission contributed by background cosmic rays. This
result has important implications for current and future gamma-ray experiments.Comment: version published on PAS
A systematic comparison of supervised classifiers
Pattern recognition techniques have been employed in a myriad of industrial,
medical, commercial and academic applications. To tackle such a diversity of
data, many techniques have been devised. However, despite the long tradition of
pattern recognition research, there is no technique that yields the best
classification in all scenarios. Therefore, the consideration of as many as
possible techniques presents itself as an fundamental practice in applications
aiming at high accuracy. Typical works comparing methods either emphasize the
performance of a given algorithm in validation tests or systematically compare
various algorithms, assuming that the practical use of these methods is done by
experts. In many occasions, however, researchers have to deal with their
practical classification tasks without an in-depth knowledge about the
underlying mechanisms behind parameters. Actually, the adequate choice of
classifiers and parameters alike in such practical circumstances constitutes a
long-standing problem and is the subject of the current paper. We carried out a
study on the performance of nine well-known classifiers implemented by the Weka
framework and compared the dependence of the accuracy with their configuration
parameter configurations. The analysis of performance with default parameters
revealed that the k-nearest neighbors method exceeds by a large margin the
other methods when high dimensional datasets are considered. When other
configuration of parameters were allowed, we found that it is possible to
improve the quality of SVM in more than 20% even if parameters are set
randomly. Taken together, the investigation conducted in this paper suggests
that, apart from the SVM implementation, Weka's default configuration of
parameters provides an performance close the one achieved with the optimal
configuration
Gamma-ray signatures of cosmic ray acceleration, propagation, and confinement in the era of CTA
Galactic cosmic rays are commonly believed to be accelerated at supernova
remnants via diffusive shock acceleration. Despite the popularity of this idea,
a conclusive proof for its validity is still missing. Gamma-ray astronomy
provides us with a powerful tool to tackle this problem, because gamma rays are
produced during cosmic ray interactions with the ambient gas. The detection of
gamma rays from several supernova remnants is encouraging, but still does not
constitute a proof of the scenario, the main problem being the difficulty in
disentangling the hadronic and leptonic contributions to the emission. Once
released by their sources, cosmic rays diffuse in the interstellar medium, and
finally escape from the Galaxy. The diffuse gamma-ray emission from the
Galactic disk, as well as the gamma-ray emission detected from a few galaxies
is largely due to the interactions of cosmic rays in the interstellar medium.
On much larger scales, cosmic rays are also expected to permeate the
intracluster medium, since they can be confined and accumulated within clusters
of galaxies for cosmological times. Thus, the detection of gamma rays from
clusters of galaxies, or even upper limits on their emission, will allow us to
constrain the cosmic ray output of the sources they contain, such as normal
galaxies, AGNs, and cosmological shocks. In this paper, we describe the impact
that the Cherenkov Telescope Array, a future ground-based facility for
very-high energy gamma-ray astronomy, is expected to have in this field of
research.Comment: accepted to Astroparticle Physics, special issue on Physics with the
Cherenkov Telescope Arra
Which space? Whose space? An experience in involving students and teachers in space design
To date, learning spaces in higher education have been designed with little engagement on the part of their most important users: students and teachers. In this paper, we present the results of research carried out in a UK university. The research aimed to understand how students and teachers conceptualise learning spaces when they are given the opportunity to do so in a workshop environment. Over a number of workshops, participants were encouraged to critique a space prototype and to re-design it according to their own views and vision of learning spaces to optimise pedagogical encounters. The findings suggest that the active involvement of students and teachers in space design endows participants with the power of reflection on the pedagogical process, which can be harnessed for the actual creation and innovation of learning spaces
Theory of the thermoelectricity of intermetallic compounds with Ce or Yb ions
The thermoelectric properties of intermetallic compounds with Ce or Yb ions
are explained by the single-impurity Anderson model which takes into account
the crystal-field splitting of the 4{\it f} ground-state multiplet, and assumes
a strong Coulomb repulsion which restricts the number of {\it f} electrons or
{\it f} holes to for Ce and for Yb ions. Using
the non-crossing approximation and imposing the charge neutrality constraint on
the local scattering problem at each temperature and pressure, the excitation
spectrum and the transport coefficients of the model are obtained. The
thermopower calculated in such a way exhibits all the characteristic features
observed in Ce and Yb intermetallics. Calculating the effect of pressure on
various characteristic energy scales of the model, we obtain the phase
diagram which agrees with the experimental data on CeRuSi,
CeCuSi, CePdSi, and similar compounds. The evolution of the
thermopower and the electrical resistance as a function of temperature,
pressure or doping is explained in terms of the crossovers between various
fixed points of the model and the redistribution of the single-particle
spectral weight within the Fermi window.Comment: 13 pages, 11 figure
- …
