Diffusive shock acceleration in supernova remnants is the most widely invoked
paradigm to explain the Galactic cosmic ray spectrum. Cosmic rays escaping
supernova remnants diffuse in the interstellar medium and collide with the
ambient atomic and molecular gas. From such collisions gamma-rays are created,
which can possibly provide the first evidence of a parent population of runaway
cosmic rays. We present model predictions for the GeV to TeV gamma-ray emission
produced by the collisions of runaway cosmic rays with the gas in the
environment surrounding the shell-type supernova remnant RX J1713.7-3946. The
spectral and spatial distributions of the emission, which depend upon the
source age, the source injection history, the diffusion regime and the
distribution of the ambient gas, as mapped by the LAB and NANTEN surveys, are
studied in detail. In particular, we find for the region surrounding RX
J1713-3946, that depending on the energy one is observing at, one may observe
startlingly different spectra or may not detect any enhanced emission with
respect to the diffuse emission contributed by background cosmic rays. This
result has important implications for current and future gamma-ray experiments.Comment: version published on PAS