Accuracy and Responsiveness of CPU Sharing
Using Xen'’s Cap Values

David Schanzenbach Henri Casanova

Information and Computer Sciences Dept.
University of Hawai‘i at Manoa, Honolulu, U.S.A.

Abstract

The accuracy and responsiveness of the Xen CPU Scheduler is evaluated using the “cap value” mecha-
nism provided by Xen. The goal of the evaluation is to determine whether state-of-the-art virtualization
technology, and in particular Xen, enables CPU sharing that is sufficiently accurate and responsive for
the purpose of enabling “flexible resource allocations” in virtualized cluster environments.

1 Introduction

Over the last decade, commodity clusters have emerged as a corner stone technology for high-performance
computing [1], data center operation [2], and network service hosting [3]. With the increase of computing
power, comes a larger price tag in the form of power, cooling, space and administration cost. These all add
greatly to the cost of maintaining a commodity cluster. With these high costs, cluster utilization is critical.
Only high utilization can justify the expenditures associated with a large cluster [4, 5].

To increase utilization clusters are shared among users and application. Unfortunately, current cluster
sharing strategies have limitations, some of which hinder utilization. Cluster sharing today is almost always
done using rigid resource allocations (e.g., 10 cluster nodes, 15 virtual host slices). This forces applications to
specify resource needs ahead of time. Furthermore, applications can be delayed until enough vacant resources
are available, while currently running applications often do not make full use of the resources allocated to
them. The consequences are lowered resource utilization and lowered application throughput. Furthermore,
the use of rigid resource allocations makes it difficult to determine “good” allocations, i.e., in a view to
optimizing some overall metric that quantifies performance and/or fairness as perceived by cluster users.

We claim that the use of virtualization technology can lead to much improved cluster utilization by
allowing for “flexible resource allocations” (i.e., allocations that can be fractional and dynamically changed).
A prerequisite for enabling flexible resource allocation is that CPU resources be shared in a way that is both
accurate and responsive. In this paper, we focus on the Xen [6] virtualization technology and we attempt
to quantify the accuracy and the responsiveness of the default CPU scheduler in Xen. We conduct series of
experiments to evaluate these two metrics, using both single-VM instance and multi-VM instance scenarios,
and using solely the “cap value” mechanism provided by Xen.

2 Background

2.1 Virtualization with Xen

Our goal is to evaluate qualitatively and quantitatively the CPU-sharing capabilities afforded by state-of-the-
art virtualization technology. In this paper we use Xen [6], a VM monitor, or hypervisor. A hypervisor is “a
virtualization platform that allows multiple operating systems to run on a host computer at the same time.”
There are two categories of hypervisors: (i) ones that run inside the operating system; and (ii) ones that

run between the hardware and the operating system. Xen falls in the second category, while other systems
(e.g., Virtual PC [7], some versions of VMWare [8]) falls in the first category. As a result, Xen requires
either a modified operating system, called “paravirtualization”, or hardware support for virtualization, called
“hardware virtualization” [9].

Xen provides several CPU schedulers via which different strategies for sharing compute resources among
VM instance can be enacted. In this work we use the default scheduler, i.e., the Xen credit scheduler. Each
VM instance is assigned a cap and a weight. The cap is a percentage that defines the maximum fraction of
the CPU that can be used by the VM instance. When multiple VM instances contend for the CPU, then
they are allocated CPU shares proportionally to their weights. In this paper we evaluate how accurate and
reactive cap specifications are. We do not consider weights due to the following rationale. The broader
objective of this work is to determine whether state-of-art virtualization technology, such as Xen, can be
used to enforce precise and quickly adaptable resource allocations in a virtualized cluster environment. In
this setting, a resource allocator would have full control over CPU shares allocated to VM instances and thus
would only need to set their cap values. Contention among VM instances is therefore addressed by ensuring
that the sum of the caps of all these instances is always lower than or equal to 100.

3 Accuracy of CPU Sharing with Xen

In this section, we evaluate the accuracy of Xen for sharing the CPU among VM instances based on cap
values. We first study the case when a single VM instance is running, and then the case when multiple VM
instances are running.

In all our experiments we use Xen 3.1 on a dual-proc 64-bit machine. All VM instances use identical
images of a 64-bit version of Fedora 8. Each VM instance is allocated 700 MB of RAM, and all instances
run on the same physical CPU. We restrict our study to the case of a single physical CPU. However, our
experiments are controlled by an additional VM instance that runs on a separate physical processor to avoid
interference with the VM instances that are part of the experiment.

The overall goal of our experiments is to measure the discrepancy between the cap specifications of and
the effective CPU shares obtained by VM instances running under the Xen hypervisor. For now, we only
consider CPU-bound VM instances. Each VM instance continuously executes a 100 x 100 double precision
matrix multiplication using the LAPACK DGEMM routine [10]. We determine the effective CPU share
obtained by a VM instance based on the rate at which it computes these matrix multiplications.

3.1 Single VM Instance Experiments

For these experiments we run a single VM instance for one hour using 11 cap values (1, 10, 20, ..., 100), with
10 repeats for each cap values. Results are shown in Table 1, which for each cap shows the average compute
rate (in MFlop/s) and its coefficient of variation (CV) in percentage. Moreover, a linear regression of the
average compute rate versus the cap yields an R-squared value of 0.99969, showing that the compute rate
increases almost perfectly linearly with the cap. The CV values are all low, below 3%, across the experiments.

Cap 1 10 20 30 40 50 60 70 80 90 100
MFlops/s | 7.41 | 77.17 | 153.41 | 229.90 | 299.40 | 391.25 | 472.74 | 550.56 | 631.20 | 710.34 | 790.34
CV (%) 1.33 | 0.95 1.49 0.69 2.80 0.42 0.08 0.81 0.07 0.07 0.03

Table 1: Average compute rate and CV for a single VM instance for different cap values over 10 trials.

A linear increase of the compute rate with the cap value is necessary for Xen’s CPU sharing to be valid.
However, we still need to determine whether the actual compute rates achieved are themselves reasonable.
Consequently, we run our matrix multiplication program outside of Xen to assess the "raw” performance
of the program, which achieves a compute rate of 792.52 MFlop/sec (averaged over 10 trials). We first
observed that this compute rate is 0.27% higher than the rate obtained within Xen for a VM instance with

a cap set at 100%. However, we can easily compute the difference between the compute rate achieve by a
VM instance when assigned a cap of %, and between 2% of this raw compute rate. It turns out that the
R-squared quantifying the difference between the observed average compute rates for different cap values
and the compute rates computed based on the cap values and on the raw compute rate is 0.99931. Finally,
the CV over the 10 runs outside of Xen is 0.08%, which is comparable to CV values observed within Xen.

We conclude that Xen leads to negligible overhead, and more importantly that cap values can be used to
allocate a precise fraction of the CPU to a VM instance.

3.2 Multiple VM Instances Experiments

For these experiments we ran multiple VM instances that ran for one hour using predefined as well as
randomly assigned cap values. The experiment conducted for two VM instances used predetermined cap
values of 1, 25, 50, 75 and 99. We also conducted experiments with 4, 6, 8 and 10 VM instances using
randomly selected cap values. In each instance, the cap values used were picked such that their sum would
be 100%. For all but the experiments with two VM instances, 10 different sets of cap values were used. Each
individual experiment was repeated five times and results were averaged.

In order to quantify the error, for each VM instance we computed the absolute percentage difference
between the cap value divided by 100 and the MFlops/s rate observed divided by the Mflops/s rate obtained
with a cap value equal to 100%. A value of zero indicates that the cap value throttles the compute rate
accurately. The highest absolute difference that was observed over all our experiments was 5.99%. The
average absolute difference was 0.71%. Like for the experiments in the previous section, we found that the
CV of a VM’s observed compute rates between repeats of the same experiments was within the same 3%
range.

As in the previous section, we conclude that Xen leads to negligible overhead and that cap values can be
used to allocate a precise CPU fractions.

4 Responsiveness of CPU Sharing with Xen

In this section, we evaluate how responsive Xen is to changes in the cap values for VM instances. More
precisely, how long does it take for a VM’s effective CPU allocation to change after a change in its cap value?

For these experiments, we use the same system that was used previously. We also reuse the same matrix
multiplication code with a slight modification. In order to test how responsive Xen is to changes in cap
value, the matrix multiplication was modified to not keep track of a MFlops/s rate, but rather to do a fixed
amount of work (i.e., 100 matrix multiplications) repeatedly. We term this fixed amount of work a “probe”.
After the completion of each probe, the VM instance sends a ping to a daemon running on a dedicated VM
instance that keeps track of the time it took to complete the probe. In order to make sure the VM instance
running the daemon did not interfere with the experiments, it was running on a different physical processor.
This experiment was conducted for one hour, with the cap value of the VM instance changing every 10
minutes. In the end we obtained a time-stamped series of times needed to perform a probe, which we can
put in perspective with the times at which the cap values were changed.

For the single VM instance experiment, the cap value of the VM instance was changed between the values
of 20% and 80%. For the multiple VM instances experiment, five VM instances were used. The cap values
of the VM instances switched between the values of 20% and 5%, 20% and 5%, 20% and 10%, 20% and 20%,
and 20% and 60%. The conclusion of these experiments is as follows. Let ¢ be the time at which the cap
value is changed. Let p;_; be the last probe time reported before time ¢, p; the first probe time reported
after time ¢, and p;y1 the second probe time reported after time ¢. In all cases we found that p.y; is in line
with the new cap value. p, is typically in between p;_; and p;y1 because the cap value was changed while the
probe was executing. Therefore, it takes at most the time to execute one probe before the new CPU share
imposed by the new cap value becomes effective. Probe times depend on the cap values, but in many of our
experiments these times were on the order of one second (they were larger when cap values were particularly
low).

More fine-grained experiments could be conducted to determine the responsiveness of Xen to cap value
changes more precisely. However, for our broader purpose, the responsiveness we observe is sufficient to
justify the use of Xen, or technologies like it, to manage a virtual cluster that enables dynamic and flexible
resource allocation.

5 Conclusion

In this paper we have evaluated the accuracy and responsiveness of the Xen CPU scheduler when using solely
cap values. Our experiments spanned both single- and multi-VM instance scenarios, on a single physical
processor. We found that the Xen scheduler is likely sufficiently accurate and responsive in a view to enabling
flexible resource allocations in virtual clusters.

References

[1] Top500 supercomputer sites. http://www.top500.o0rg, 2008.

[2] John Markoff and Saul Hansell. Hiding in Plain Sight, Google Seeks More Power.
http://www.nytimes.com/2006/06/14/technology/14search.html, 2006.

[3] Amazon Elastic Compute Cloud. http://aws.amazon.com/ec2.

[4] Jonathan G. Koomey. Estimating Total Power Consumption by Servers in the U.S. and the World.
http://enterprise.amd.com/Downloads/svrpwrusecompletefinal.pdf, February 2007.

[5] U.S. Environmental Protection Agency. Report to Congress on Server and Data Center Energy Effi-
ciency. http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congres
August 2007.

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the art of virtualization. In Proceedings of the 19th ACM Symposium on Operating Systems
Principles, pages 164-177, 2003.

[7] Microsoft Virtual PC. http://www.microsoft.com/windows/products/winfamily/virtualpc/default.mspx.
[8] VMware. http://www.vmware.com/.
[9] Intel Virtualization Technology (Intel VT). http://www.intel.com/technology/virtualization/index.htm.

[10] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen. LAPACK Users’ Guide Third Edition. Society for
Industrial and Applied Mathematics, 1999.

http://www.top500.org
http://www.nytimes.com/2006/06/14/technology/14search.html
http://aws.amazon.com/ec2
http://enterprise.amd.com/Downloads/svrpwrusecompletefinal.pdf
http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf
http://www.microsoft.com/windows/products/winfamily/virtualpc/default.mspx
http://www.vmware.com/
http://www.intel.com/technology/virtualization/index.htm

	1 Introduction
	2 Background
	2.1 Virtualization with Xen

	3 Accuracy of CPU Sharing with Xen
	3.1 Single VM Instance Experiments
	3.2 Multiple VM Instances Experiments

	4 Responsiveness of CPU Sharing with Xen
	5 Conclusion

