2,189 research outputs found

    The effects of a revised 7^7Be e^--capture rate on solar neutrino fluxes

    Get PDF
    The electron-capture rate on 7^7Be is the main production channel for 7^7Li in several astrophysical environments. Theoretical evaluations have to account for not only the nuclear interaction, but also the processes in the plasma where 7^7Be ions and electrons interact. In the past decades several estimates were presented, pointing out that the theoretical uncertainty in the rate is in general of few percents. In the framework of fundamental solar physics, we consider here a recent evaluation for the 7^7Be+e^- rate, not used up to now in the estimate of neutrino fluxes. We analysed the effects of the new assumptions on Standard Solar Models (SSMs) and compared the results obtained by adopting the revised 7^7Be+e^- rate to those obtained by the one reported in a widely used compilation of reaction rates (ADE11). We found that new SSMs yield a maximum difference in the efficiency of the 7^7Be channel of about -4\% with respect to what is obtained with the previously adopted rate. This fact affects the production of neutrinos from 8^8B, increasing the relative flux up to a maximum of 2.7\%. Negligible variations are found for the physical and chemical properties of the computed solar models. The agreement with the SNO measurements of the neutral current component of the 8^8B neutrino flux is improved.Comment: 7 pages, 3 figures, 4 tables. Accepted for the publication on A&

    Nucleosynthesis and mixing on the Asymptotic Giant Branch. III. Predicted and observed s-process abundances

    Get PDF
    We present the results of s-process nucleosynthesis calculations for AGB stars of different metallicities and initial masses. The computations were based on previously published stellar evolutionary models that account for the III dredge up phenomenon occurring late on the AGB. Neutron production is driven by the 13C(alpha,n)16O reaction during the interpulse periods in a tiny layer in radiative equilibrium at the top of the He- and C-rich shell. The s-enriched material is subsequently mixed with the envelope by the III dredge up, and the envelope composition is computed after each thermal pulse. We follow the changes in the photospheric abundance of the Ba-peak elements (heavy s, or `hs') and that of the Zr-peak ones (light s, or `ls'), whose logarithmic ratio [hs/ls] has often been adopted as an indicator of the s-process efficiency. The theoretical predictions are compared with published abundances of s elements for Galactic AGB giants of classes MS, S, SC, post-AGB supergiants, and for various classes of binary stars. The observations in general confirm the complex dependence of n captures on metallicity. They suggest that a moderate spread exists in the abundance of 13C that is burnt in different stars. Although additional observations are needed, a good understanding has been achieved of s-process operation in AGB. The detailed abundance distribution including the light elements (CNO) of a few s-enriched stars at different metallicity are examined.Comment: Accepted for ApJ, 59 pages, 19 figures, 5 table

    On the Origin of the Early Solar System Radioactivities. Problems with the AGB and Massive Star Scenarios

    Get PDF
    Recent improvements in stellar models for intermediate-mass and massive stars are recalled, together with their expectations for the synthesis of radioactive nuclei of lifetime τ25\tau \lesssim 25 Myr, in order to re-examine the origins of now extinct radioactivities, which were alive in the solar nebula. The Galactic inheritance broadly explains most of them, especially if rr-process nuclei are produced by neutron star merging according to recent models. Instead, 26^{26}Al, 41^{41}Ca, 135^{135}Cs and possibly 60^{60}Fe require nucleosynthesis events close to the solar formation. We outline the persisting difficulties to account for these nuclei by Intermediate Mass Stars (2 \lesssim M/M78_\odot \lesssim 7 - 8). Models of their final stages now predict the ubiquitous formation of a 13^{13}C reservoir as a neutron capture source; hence, even in presence of 26^{26}Al production from Deep Mixing or Hot Bottom Burning, the ratio 26^{26}Al/107^{107}Pd remains incompatible with measured data, with a large excess in 107^{107}Pd. This is shown for two recent approaches to Deep Mixing. Even a late contamination by a Massive Star meets problems. In fact, inhomogeneous addition of Supernova debris predicts non-measured excesses on stable isotopes. Revisions invoking specific low-mass supernovae and/or the sequential contamination of the pre-solar molecular cloud might be affected by similar problems, although our conclusions here are weakened by our schematic approach to the addition of SN ejecta. The limited parameter space remaining to be explored for solving this puzzle is discussed.Comment: Accepted for publication on Ap

    The Gattini cameras for optical sky brightness measurements at Dome C, Antarctica

    Get PDF
    The Gattini cameras are two site testing instruments for the measurement of optical sky brightness, large area cloud cover and auroral detection of the night sky above the high altitude Dome C site in Antarctica. The cameras have been operating since installation in January 2006 and are currently at the end of the first Antarctic winter season. The cameras are transit in nature and are virtually identical both adopting Apogee Alta CCD detectors. By taking frequent images of the night sky we obtain long term cloud cover statistics, measure the sky background intensity as a function of solar and lunar altitude and phase and directly measure the spatial extent of bright aurora if present and when they occur. The full data set will return in December 2006 however a limited amount of data has been transferred via the Iridium network enabling preliminary data reduction and system evaluation. An update of the project is presented together with preliminary results from data taken since commencement of the winter season

    Rubidium, zirconium, and lithium production in intermediate-mass asymptotic giant branch stars

    Full text link
    A recent survey of a large sample of Galactic intermediate-mass (>3 Msun) asymptotic giant branch (AGB) stars shows that they exhibit large overabundances of rubidium (Rb) up to 100--1000 times solar. These observations set constraints on our theoretical notion of the slow neutron capture process (s process) that occurs inside intermediate-mass AGB stars. Lithium (Li) abundances are also reported for these stars. In intermediate-mass AGB stars, Li can be produced by proton captures occuring at the base of the convective envelope. For this reason the observations of Rb, Zr, and Li set complementary constraints on different processes occurring in the same stars. We present predictions for the abundances of Rb, Zr, and Li as computed for the first time simultaneously in intermediate-mass AGB star models and compare them to the current observational constraints. We find that the Rb abundance increases with increasing stellar mass, as is inferred from observations but we are unable to match the highest observed [Rb/Fe] abundances. Inclusion of a partial mixing zone (PMZ) to activate the 13C(a,n)16O reaction as an additional neutron source yields significant enhancements in the Rb abundance. However this leads to Zr abundances that exceed the upper limits of the current observational constraints. If the third dredge-up (TDU) efficiency remains as high during the final stages of AGB evolution as during the earlier stages, we can match the lowest values of the observed Rb abundance range. We predict large variations in the Li abundance, which are observed. Finally, the predicted Rb production increases with decreasing metallicity, in qualitative agreement with observations of Magellanic Cloud AGB stars. However stellar models of Z=0.008 and Z=0.004 intermediate-mass AGB stars do not produce enough Rb to match the observed abundances.Comment: 11 pages, 7 figures, accepted for publication on Astronomy & Astrophysic

    Xanthine oxidoreductase regulates macrophage IL1β secretion upon NLRP3 inflammasome activation.

    Get PDF
    Activation of the NLRP3 inflammasome by microbial ligands or tissue damage requires intracellular generation of reactive oxygen species (ROS). We present evidence that macrophage secretion of IL1β upon stimulation with ATP, crystals or LPS is mediated by a rapid increase in the activity of xanthine oxidase (XO), the oxidized form of xanthine dehydrogenase, resulting in the formation of uric acid as well as ROS. We show that XO-derived ROS, but not uric acid, is the trigger for IL1β release and that XO blockade results in impaired IL1β and caspase1 secretion. XO is localized to both cytoplasmic and mitochondrial compartments and acts upstream to the PI3K-AKT signalling pathway that results in mitochondrial ROS generation. This pathway represents a mechanism for regulating NLRP3 inflammasome activation that may have therapeutic implications in inflammatory diseases

    On the muon neutrino mass

    Get PDF
    During the runs of the PS 179 experiment at LEAR of CERN, we photographed an event of antiproton-Ne absorption, with a complete pi+ -> mu+ ->e+ chain. From the vertex of the reaction a very slow energy pi+ was emitted. The pi+ decays into a mu+ and subsequently the mu+ decays into a positron. At the first decay vertex a muon neutrino was emitted and at the second decay vertex an electron neutrino and a muon antineutrino. Measuring the pion and muon tracks and applying the momentum and energy conservation and using a classical statistical interval estimator, we obtained an experimental upper limit for the muon neutrino mass: m_nu < 2.2 MeV at a 90% confidence level. A statistical analysis has been performed of the factors contributing to the square value of the neutrino mass limit.Comment: 18 pages, 5 eps figure

    Evolution and Nucleosynthesis of AGB stars in Three Magellanic Cloud Clusters

    Full text link
    We present stellar evolutionary sequences for asymptotic giant branch (AGB) stars in the Magellanic Cloud clusters NGC 1978, NGC 1846 and NGC 419. The new stellar models for the three clusters match the observed effective temperatures on the giant branches, the oxygen-rich to carbon-rich transition luminosities, and the AGB-tip luminosities. A major finding is that a large amount of convective overshoot (up to 3 pressure scale heights) is required at the base of the convective envelope during third dredge-up in order to get the correct oxygen-rich to carbon-rich transition luminosity. The stellar evolution sequences are used as input for detailed nucleosynthesis calculations. For NGC 1978 and NGC 1846 we compare our model results to the observationally derived abundances of carbon and oxygen. We find that additional mixing processes (extra-mixing) are required to explain the observed abundance patterns. For NGC 1846 we conclude that non-convective extra-mixing processes are required on both the RGB and the AGB, in agreement with previous studies. For NGC 1978 it is possible to explain the C/O and 12C/13C abundances of both the O-rich and the C-rich AGB stars by assuming that the material in the intershell region contains high abundances of both C and O. This may occur during a thermal pulse when convective overshoot at the inner edge of the flash-driven convective pocket dredges C and O from the core to the intershell. For NGC 419 we provide our predicted model abundance values although there are currently no published observed abundance studies for the AGB stars in this cluster.Comment: 16 figures, 3 tables, Accepted for publication in Ap

    HD 11397 and HD 14282 - Two new barium stars?

    Full text link
    We have performed a detailed abundance analysis of the content of s-process elements of two dwarf stars with suspected overabundace of those elements. Such stars belong to a special kinematic sample of the solar neighborhood, with peculiar kinematics and different chemical abundances when compared to "normal" disk stars. We aim to define if those stars can be identified as barium stars, based on their s-process elements abundances, and their classification, i.e., if they share their chemical profile with strong or mild barium stars. We also intend to shed light on the possible origins of the different kinds of barium stars. Spectra have been taken by using the FEROS spectrograph at the 1.52m telescope of ESO, La Silla. Abundances have been derived for 18 elements, by matching the synthetic profile with the observed spectrum. We have found that HD 11397 shows a mild enhancement for most of the s-process elements as well as for some r-process elements. This star seems to share its abundance profile with the mild Ba-stars. Although showing some slight chemical anomalies for Y, Sr, Mo, and Pb, HD 14282 depicts a chemical pattern similar to the normal stars with slight s-process enhancements.Comment: 11 pages, 5 figure
    corecore