1,660 research outputs found
OVII and OVIII line emission in the diffuse soft X-ray background: heliospheric and galactic contributions
We study the 0.57 keV (O VII triplet) and 0.65 keV (O VIII) diffuse emission
generated by charge transfer collisions between solar wind (SW) oxygen ions and
interstellar H and He neutral atoms in the inner Heliosphere. These lines which
dominate the 0.3-1.0 keV energy interval are also produced by hot gas in the
galactic halo (GH) and possibly the Local Interstellar Bubble (LB). We
developed a time-dependent model of the SW Charge-Exchange (SWCX) X-ray
emission, based on the localization of the SW Parker spiral at each instant. We
include input SW conditions affecting three selected fields, as well as
shadowing targets observed with XMM-Newton, Chandra and Suzaku and calculate
X-ray emission fot O VII and O VIII lines. We determine SWCX contamination and
residual emission to attribute to the galactic soft X-ray background. We obtain
ground level intensities and/or simulated lightcurves for each target and
compare to X-ray data. The local 3/4 keV emission (O VII and O VIII) detected
in front of shadowing clouds is found to be entirely explained by the CX
heliospheric emission. No emission from the LB is needed at these energies.
Using the model predictions we subtract the heliospheric contribution to the
measured emission and derive the halo contribution. We also correct for an
error in the preliminary analysis of the Hubble Deep Field North (HDFN).Comment: 21 pages (3 on-line), 10 figures (4 on-line), accepted for
publication in Astronomy and Astrophysic
X- and gamma-ray studies of HESS J1731-347 coincident with a newly discovered SNR
In the survey of the Galactic plane conducted with H.E.S.S., many VHE
gamma-ray sources were discovered for which no clear counterpart at other
wavelengths could be identified. HESS J1731-347 initially belonged to this
source class. Recently however, the new shell-type supernova remnant (SNR)
G353.6-0.7 was discovered in radio data, positionally coinciding with the VHE
source. We will present new X-ray observations that cover a fraction of the VHE
source, revealing nonthermal emission that most likely can be interpreted as
synchrotron emission from high-energy electrons. This, along with a larger
H.E.S.S. data set which comprises more than twice the observation time used in
the discovery paper, allows us to test whether the VHE source may indeed be
attributed to shell-type emission from that new SNR. If true, this would make
HESS J1731-347 a new object in the small but growing class of non-thermal
shell-type supernova remnants with VHE emission.Comment: 4 pages, 5 figures, to appear in proceedings of the 31st ICRC, Lodz,
Polan
Temporal variation of the total nitrogen concentration in aereal organs of nitrogen fixing and non fixing riparian species
Changes in nitrogen concentration was determinated in samples of Alnus glutinosa, Elaeagnus angustifolia, Populus x canadiensis and Ailanthus altissima leaves, petioles and branches periodically during a year. Maximum nitrogen percentage was found in diazotrophic species (Alnus and Elaeagnus) and the nitrogen retranslocation form branches was higher (2.5 times) in no fixing species.Se estudian 10s cambios en la concentración de nitrógeno en Alnus glutinosa, Elaeagnus angustifolia, Populus x canadiensis y Ailanthus altissima, en hojas, peciolos y tallos periódicamente durante un año. El porcentaje máximo de nitrógeno se encuentra en las especies diazotrofas (Alnus y Elaeagnus) y la retraslocación de dicho elemento desde los tallos es superior (2.5) veces) en las plantas no actinonizas
Gamma-ray signatures of cosmic ray acceleration, propagation, and confinement in the era of CTA
Galactic cosmic rays are commonly believed to be accelerated at supernova
remnants via diffusive shock acceleration. Despite the popularity of this idea,
a conclusive proof for its validity is still missing. Gamma-ray astronomy
provides us with a powerful tool to tackle this problem, because gamma rays are
produced during cosmic ray interactions with the ambient gas. The detection of
gamma rays from several supernova remnants is encouraging, but still does not
constitute a proof of the scenario, the main problem being the difficulty in
disentangling the hadronic and leptonic contributions to the emission. Once
released by their sources, cosmic rays diffuse in the interstellar medium, and
finally escape from the Galaxy. The diffuse gamma-ray emission from the
Galactic disk, as well as the gamma-ray emission detected from a few galaxies
is largely due to the interactions of cosmic rays in the interstellar medium.
On much larger scales, cosmic rays are also expected to permeate the
intracluster medium, since they can be confined and accumulated within clusters
of galaxies for cosmological times. Thus, the detection of gamma rays from
clusters of galaxies, or even upper limits on their emission, will allow us to
constrain the cosmic ray output of the sources they contain, such as normal
galaxies, AGNs, and cosmological shocks. In this paper, we describe the impact
that the Cherenkov Telescope Array, a future ground-based facility for
very-high energy gamma-ray astronomy, is expected to have in this field of
research.Comment: accepted to Astroparticle Physics, special issue on Physics with the
Cherenkov Telescope Arra
XMM-Newton observations of the hot spot galaxy NGC 2903
We report on the first deeper X-ray broad-band observation of the hot spot
galaxy NGC 2903 obtained with XMM-Newton. X-ray imaging and spectra of the
spiral barred galaxy were obtained from XMM-Newton archival data to study its
X-ray population and the conditions of the hot gas in its central region. We
investigate the spectral properties of the discrete point-source population and
give estimates of their X-ray spectral parameters. By analysing the RGS
spectra, we derive temperature and abundances for the hot gas located in its
central region. A total of six X-ray point sources (four of them ULX
candidates) were detected in the energy range of 0.3-10.0 keV located within
the galaxy D25 optical disk. Three of these sources are detected for the first
time, and one of them with a luminosity of higher than 10^39 erg/s. After
fitting three different models, we were able to estimate their luminosities,
which are compatible with those of binaries with a compact object in the form
of black holes (BHs) rather than neutron stars (NSs). We extracted the combined
first-order RGS1 and RGS2 spectra of its central region, which display several
emission lines. Both O\,{\sc vii} and lines seem to be of similar
strength, which is consistent with the presence of the collisionally ionized
gas that is typical of starburst galaxies. We fitted the spectrum to a model
for a plasma in collisional ionization equilibrium (CIE) and the continuum was
modelled with a power law, resulting in a plasma temperature of T = 0.31 \pm
0.01 keV and an emission measure EM \equiv n_Hn_eV =6.4_{-0.4}^{+0.5}\times
10^{61}^{-3}. We also estimated abundances that are consistent with solar
values.Comment: 5 pages, 2 figures, accepted for publication in A&A, resubmission
corrects typographical errors and improves exposition according to the
referee's suggestion
A simple model for electron plasma heating in supernova remnants
Context: Multiwavelength observations of supernova remnants can be explained
within the framework of diffusive shock acceleration theory, which allows
effective conversion of the explosion energy into cosmic rays. Although the
models of nonlinear shocks describe reasonably well the nonthermal component of
emission, certain issues, including the heating of the thermal electron plasma
and the related X-ray emission, still remain open.
Methods: Numerical solution of the equations of the Chevalier model for
supernova remnant evolution, coupled with Coulomb scattering heating of the
electrons.
Results: The electron temperature and the X-ray thermal Bremsstrahlung
emission from supernova remnants have been calculated as functions of the
relevant parameters. Since only the Coulomb mechanism was considered for
electron heating, the values obtained for the electron temperatures should be
treated as lower limits. Results from this work can be useful to constrain
model parameters for observed SNRs.Comment: Accepted to A&A as a research not
Locating the VHE source in the Galactic Centre with milli-arcsecond accuracy
Very high-energy gamma-rays (VHE; E>100 GeV) have been detected from the
direction of the Galactic Centre up to energies E>10 TeV. Up to now, the origin
of this emission is unknown due to the limited positional accuracy of the
observing instruments. One of the counterpart candidates is the super-massive
black hole (SMBH) Sgr A*. If the VHE emission is produced within ~10^{15} cm
~1000 r_G (r_G=G M/c^2 is the Schwarzschild radius) of the SMBH, a decrease of
the VHE photon flux in the energy range 100--300 GeV is expected whenever an
early type or giant star approaches the line of sight within ~ milli-arcseconds
(mas). The dimming of the flux is due to absorption by pair-production of the
VHE photons in the soft photon field of the star, an effect we refer to as
pair-production eclipse (PPE). Based upon the currently known orbits of stars
in the inner arcsecond of the Galaxy we find that PPEs lead to a systematic
dimming in the 100--300 GeV band at the level of a few per cent and lasts for
several weeks. Since the PPE affects only a narrow energy band and is well
correlated with the passage of the star, it can be clearly discriminated
against other systematic or even source-intrinsic effects. While the effect is
too small to be observable with the current generation of VHE detectors,
upcoming high count-rate experiments like the Cherenkov telescope array (CTA)
will be sufficiently sensitive. Measuring the temporal signature of the PPE
bears the potential to locate the position and size of the VHE emitting region
within the inner 1000 r_G or in the case of a non-detection exclude the
immediate environment of the SMBH as the site of gamma-ray production
altogether.Comment: 7 pages, published in MNRAS 402, pg. 1342-134
Phenomenology of Quantum Gravity and its Possible Role in Neutrino Anomalies
New phenomenological models of Quantum Gravity have suggested that a
Lorentz-Invariant discrete spacetime structure may become manifest through a
nonstandard coupling of matter fields and spacetime curvature. On the other
hand, there is strong experimental evidence suggesting that neutrino
oscillations cannot be described by simply considering neutrinos as massive
particles. In this manuscript we motivate and construct one particular
phenomenological model of Quantum Gravity that could account for the so-called
neutrino anomalies.Comment: For the proceedings of "Relativity and Gravitation: 100 Years after
Einstein in Prague" (June 2012, Prague
From 10 Kelvin to 10 TeraKelvin: Insights on the Interaction Between Cosmic Rays and Gas in Starbursts
Recent work has both illuminated and mystified our attempts to understand
cosmic rays (CRs) in starburst galaxies. I discuss my new research exploring
how CRs interact with the ISM in starbursts. Molecular clouds provide targets
for CR protons to produce pionic gamma rays and ionization, but those same
losses may shield the cloud interiors. In the densest molecular clouds, gamma
rays and Al-26 decay can provide ionization, at rates up to those in Milky Way
molecular clouds. I then consider the free-free absorption of low frequency
radio emission from starbursts, which I argue arises from many small, discrete
H II regions rather than from a "uniform slab" of ionized gas, whereas
synchrotron emission arises outside them. Finally, noting that the hot
superwind gas phase fills most of the volume of starbursts, I suggest that it
has turbulent-driven magnetic fields powered by supernovae, and that this phase
is where most synchrotron emission arises. I show how such a scenario could
explain the far-infrared radio correlation, in context of my previous work. A
big issue is that radio and gamma-ray observations imply CRs also must interact
with dense gas. Understanding how this happens requires a more advanced
understanding of turbulence and CR propagation.Comment: Conference proceedings for "Cosmic-ray induced phenomenology in
star-forming environments: Proceedings of the 2nd Session of the Sant Cugat
Forum of Astrophysics" (April 16-19, 2012). 16 pages, 5 figure
- …
