48 research outputs found
The QCD phase diagram at nonzero quark density
We determine the phase diagram of QCD on the \mu-T plane for small to
moderate chemical potentials. Two transition lines are defined with two
quantities, the chiral condensate and the strange quark number susceptibility.
The calculations are carried out on N_t =6,8 and 10 lattices generated with a
Symanzik improved gauge and stout-link improved 2+1 flavor staggered fermion
action using physical quark masses. After carrying out the continuum
extrapolation we find that both quantities result in a similar curvature of the
transition line. Furthermore, our results indicate that in leading order the
width of the transition region remains essentially the same as the chemical
potential is increased.Comment: 12 pages, 6 figure
The sign problem across the QCD phase transition
The average phase factor of the QCD fermion determinant signals the strength
of the QCD sign problem. We compute the average phase factor as a function of
temperature and baryon chemical potential using a two-flavor NJL model. This
allows us to study the strength of the sign problem at and above the chiral
transition. It is discussed how the anomaly affects the sign problem.
Finally, we study the interplay between the sign problem and the endpoint of
the chiral transition.Comment: 9 pages and 9 fig
Degenerate distributions in complex Langevin dynamics: one-dimensional QCD at finite chemical potential
We demonstrate analytically that complex Langevin dynamics can solve the sign
problem in one-dimensional QCD in the thermodynamic limit. In particular, it is
shown that the contributions from the complex and highly oscillating spectral
density of the Dirac operator to the chiral condensate are taken into account
correctly. We find an infinite number of classical fixed points of the Langevin
flow in the thermodynamic limit. The correct solution originates from a
continuum of degenerate distributions in the complexified space.Comment: 20 pages, several eps figures, minor comments added, to appear in
JHE
QCD with Chemical Potential in a Small Hyperspherical Box
To leading order in perturbation theory, we solve QCD, defined on a small
three sphere in the large N and Nf limit, at finite chemical potential and map
out the phase diagram in the (mu,T) plane. The action of QCD is complex in the
presence of a non-zero quark chemical potential which results in the sign
problem for lattice simulations. In the large N theory, which at low
temperatures becomes a conventional unitary matrix model with a complex action,
we find that the dominant contribution to the functional integral comes from
complexified gauge field configurations. For this reason the eigenvalues of the
Polyakov line lie off the unit circle on a contour in the complex plane. We
find at low temperatures that as mu passes one of the quark energy levels there
is a third-order Gross-Witten transition from a confined to a deconfined phase
and back again giving rise to a rich phase structure. We compare a range of
physical observables in the large N theory to those calculated numerically in
the theory with N=3. In the latter case there are no genuine phase transitions
in a finite volume but nevertheless the observables are remarkably similar to
the large N theory.Comment: 44 pages, 18 figures, jhep3 format. Small corrections and
clarifications added in v3. Conclusions cleaned up. Published versio
Potential geographic distribution of Hantavirus reservoirs in Brazil
Hantavirus cardiopulmonary syndrome is an emerging zoonosis in Brazil. Human infections occur via inhalation of aerosolized viral particles from excreta of infected wild rodents. Necromys lasiurus and Oligoryzomys nigripes appear to be the main reservoirs of hantavirus in the Atlantic Forest and Cerrado biomes. We estimated and compared ecological niches of the two rodent species, and analyzed environmental factors influencing their occurrence, to understand the geography of hantavirus transmission. N. lasiurus showed a wide potential distribution in Brazil, in the Cerrado, Caatinga, and Atlantic Forest biomes. Highest climate suitability for O. nigripes was observed along the Brazilian Atlantic coast. Maximum temperature in the warmest months and annual precipitation were the variables that most influence the distributions of N. lasiurus and O. nigripes, respectively. Models based on occurrences of infected rodents estimated a broader area of risk for hantavirus transmission in southeastern and southern Brazil, coinciding with the distribution of human cases of hantavirus cardiopulmonary syndrome. We found no demonstrable environmental differences among occurrence sites for the rodents and for human cases of hantavirus. However, areas of northern and northeastern Brazil are also apparently suitable for the two species, without broad coincidence with human cases. Modeling of niches and distributions of rodent reservoirs indicates potential for transmission of hantavirus across virtually all of Brazil outside the Amazon Basin
Recommended from our members
Intermethod Comparison and Evaluation of Measured Near Surface Residual Stress in Milled Aluminum
Background: While near surface residual stress (NSRS) from milling is a driver for distortion in aluminum parts there are few studies that directly compare available techniques for NSRS measurement. Objective: We report application and assessment of four different techniques for evaluating residual stress versus depth in milled aluminum parts. Methods: The four techniques are: hole-drilling, slotting, cos(α) x-ray diffraction (XRD), and sin2(ψ) XRD, all including incremental material removal to produce a stress versus depth profile. The milled aluminum parts are cut from stress-relieved plate, AA7050-T7451, with a range of table and tool speeds used to mill a large flat surface in several samples. NSRS measurements are made at specified locations on each sample. Results: Resulting data show that NSRS from three techniques are in general agreement: hole-drilling, slotting, and sin2(ψ) XRD. At shallow depths (< 0.03 mm), sin2(ψ) XRD data have the best repeatability (< 15 MPa), but at larger depths (> 0.04 mm) hole-drilling and slotting have the best repeatability (< 10 MPa). NSRS data from cos(α) XRD differ from data provided by other techniques and the data are less repeatable. NSRS data for different milling parameters show that the depth of NSRS increases with feed per tooth and is unaffected by cutting speed. Conclusion: Hole-drilling, slotting, and sin2(ψ) XRD provided comparable results when assessing milling-induced near surface residual stress in aluminum. Combining a simple distortion test, comprising removal of a 1 mm thick wafer at the milled surface, with a companion stress analysis showed that NSRS data from hole-drilling are most consistent with milling-induced distortion