160 research outputs found
Instability of human societies as a result of conformity
We introduce a new model that mimics the strong and sudden effects induced by
conformity in tightly interacting human societies. Such effects range from mere
crowd phenomena to dramatic political turmoil. The model is a modified version
of the Ising Hamiltonian. We have studied the properties of this Hamiltonian
using both a Metropolis simulation and analytical derivations. Our study shows
that increasing the value of the conformity parameter, results in a first order
phase transition. As a result a majority of people begin honestly to support
the idea that may contradict the moral principles of a normal human beings
though each individual would support the moral principle without tight
interaction with the society. Thus, above some critical level of conformity our
society occurs to be instable with respect to ideas that might be doubtful. Our
model includes, in a simplified way, human diversity with respect to loyalty to
the moral principles.Comment: 5 pages, 5 figures, accepted in Int. journ of modern physics section
Fragment size correlations in finite systems - application to nuclear multifragmentation
We present a new method for the calculation of fragment size correlations in
a discrete finite system in which correlations explicitly due to the finite
extent of the system are suppressed. To this end, we introduce a combinatorial
model, which describes the fragmentation of a finite system as a sequence of
independent random emissions of fragments. The sequence is accepted when the
sum of the sizes is equal to the total size. The parameters of the model, which
may be used to calculate all partition probabilities, are the intrinsic
probabilities associated with the fragments. Any fragment size correlation
function can be built by calculating the ratio between the partition
probabilities in the data sample (resulting from an experiment or from a Monte
Carlo simulation) and the 'independent emission' model partition probabilities.
This technique is applied to charge correlations introduced by Moretto and
collaborators. It is shown that the percolation and the nuclear statistical
multifragmentaion model ({\sc smm}) are almost independent emission models
whereas the nuclear spinodal decomposition model ({\sc bob}) shows strong
correlations corresponding to the break-up of the hot dilute nucleus into
nearly equal size fragments
New approach of fragment charge correlations in 129Xe+(nat)Sn central collisions
A previous analysis of the charge (Z) correlations in the
plane for Xe+Sn central collisions at 32 MeV/u has shown an enhancement in the
production of equally sized fragments (low ) which was interpreted as
an evidence for spinodal decomposition. However the signal is weak and rises
the question of the estimation of the uncorrelated yield. After a critical
analysis of its robustness, we propose in this paper a new technique to build
the uncorrelated yield in the charge correlation function. The application of
this method to Xe+Sn central collision data at 32, 39, 45 and 50 MeV/u does not
show any particular enhancement of the correlation function in any
bin.Comment: 23 pages, 9 figures, revised version with an added figure and minor
changes. To appear in Nuclear Physics
Discriminant Analysis and Secondary-Beam Charge Recognition
The discriminant-analysis method has been applied to optimize the exotic-beam
charge recognition in a projectile fragmentation experiment. The experiment was
carried out at the GSI using the fragment separator (FRS) to produce and select
the relativistic secondary beams, and the ALADIN setup to measure their
fragmentation products following collisions with Sn target nuclei. The beams of
neutron poor isotopes around 124La and 107Sn were selected to study the isospin
dependence of the limiting temperature of heavy nuclei by comparing with
results for stable 124Sn projectiles. A dedicated detector to measure the
projectile charge upstream of the reaction target was not used, and alternative
methods had to be developed. The presented method, based on the multivariate
discriminant analysis, allowed to increase the efficacy of charge recognition
up to about 90%, which was about 20% more than achieved with the simple scalar
methods.Comment: 6 pages, 7 eps figures, elsart, submitted to Nucl. Instr. and Meth.
We only die once... but from how many causes?
Analysing causes of death provides a betterunderstanding of long-term mortality trends. InFrance, the death certificates completed by physiciansgenerally mention several causes of death (2.4 onaverage in 2011). As a general rule, just one of them,the so-called underlying cause, is taken into account.As a result, the contribution of certain diseases-endocrine diseases for example-to mortality isseverely underestimated. In a context of rising lifeexpectancy where people increasingly die not from asingle cause of death but from several, it is importantto also take these contributing causes into account
Isomeric states in No
6 pagesInternational audienceIsomeric states in 253No have been investigated by conversion-electron and gamma-ray spectroscopy with the GABRIELA detection system. The 31 micro second isomer reported more than 30 years ago is found to decay to the ground state of 253No by the emission of a 167 keV M2 transition. The spin and parity of this low-lying isomeric state are established to be 5/2+. The presence of another longer-lived isomeric state is also discussed
Multifragmentation threshold in ^{93}Nb+{nat}Mg collisions at 30 MeV/nucleon
We analyzed the on reaction at 30 MeV/nucleon in the aim
of disentangling binary sequential decay and multifragmentation decay close to
the energy threshold, i.e. MeV/nucleon. Using the backtracing
technique applied to the statistical models GEMINI and SMM we reconstruct
simulated charge, mass and excitation energy distributions and compare them to
the experimental ones. We show that data are better described by SMM than by
GEMINI in agreement with the fact that multifragmentation is responsible for
fragment production at excitation energies around 3 MeV/nucleon.Comment: 16 pages, 12 figures, 5 tables Soumis \`a Nuclear Physics
Fragmentation branching ratios of highly excited hydrocarbon molecules CnH and their cations CnH+ (n<4)
We have measured fragmentation branching ratios of neutral CnH and CnH+
cations produced in high velocity (4.5 a.u) collisions between incident CnH+
cations and helium atoms. Electron capture gives rise to excited neutral
species CnH and electronic excitation to excited cations CnH+. Thanks to a
dedicated set-up, based on coincident detection of all fragments, the
dissociation of the neutral and cationic parents were recorded separately and
in a complete way. For the fragmentation of CnH, the H-loss channel is found to
be dominant, as already observed by other authors. By contrast, the H-loss and
C-loss channels equally dominate the two-fragment break up of CnH+ species. For
these cations, we provide the first fragmentation data (n > 2). Results are
also discussed in the context of astrochemistry
On the reliability of negative heat capacity measurements
A global protocol for the thermostatistical analysis of hot nuclear sources
is discussed. Within our method of minimization of variances we show that the
abnormal kinetic energy fluctuation signal recently reported in different
experimental data (M.D'Agostino et al.-Phys. Lett. B 473 (2000) 219, N. Le
Neindre et al.- contr. to the XXXVIII Bormio Winter Meeting on Nucl. Phys.
(2001) 404) is a genuine signal of a first order phase transition in a finite
system.Comment: 15 Postscript figures, submitted to NUCL. Phys. A on 24-apr-200
Estimate of average freeze-out volume in multifragmentation events
An estimate of the average freeze-out volume for multifragmentation events is
presented. Values of volumes are obtained by means of a simulation using the
experimental charged product partitions measured by the 4pi multidetector INDRA
for 129Xe central collisions on Sn at 32 AMeV incident energy. The input
parameters of the simulation are tuned by means of the comparison between the
experimental and simulated velocity (or energy) spectra of particles and
fragments.Comment: To be published in Phys. Lett. B 12 pages, 5 figure
- âŠ