160 research outputs found

    Instability of human societies as a result of conformity

    Full text link
    We introduce a new model that mimics the strong and sudden effects induced by conformity in tightly interacting human societies. Such effects range from mere crowd phenomena to dramatic political turmoil. The model is a modified version of the Ising Hamiltonian. We have studied the properties of this Hamiltonian using both a Metropolis simulation and analytical derivations. Our study shows that increasing the value of the conformity parameter, results in a first order phase transition. As a result a majority of people begin honestly to support the idea that may contradict the moral principles of a normal human beings though each individual would support the moral principle without tight interaction with the society. Thus, above some critical level of conformity our society occurs to be instable with respect to ideas that might be doubtful. Our model includes, in a simplified way, human diversity with respect to loyalty to the moral principles.Comment: 5 pages, 5 figures, accepted in Int. journ of modern physics section

    Fragment size correlations in finite systems - application to nuclear multifragmentation

    Full text link
    We present a new method for the calculation of fragment size correlations in a discrete finite system in which correlations explicitly due to the finite extent of the system are suppressed. To this end, we introduce a combinatorial model, which describes the fragmentation of a finite system as a sequence of independent random emissions of fragments. The sequence is accepted when the sum of the sizes is equal to the total size. The parameters of the model, which may be used to calculate all partition probabilities, are the intrinsic probabilities associated with the fragments. Any fragment size correlation function can be built by calculating the ratio between the partition probabilities in the data sample (resulting from an experiment or from a Monte Carlo simulation) and the 'independent emission' model partition probabilities. This technique is applied to charge correlations introduced by Moretto and collaborators. It is shown that the percolation and the nuclear statistical multifragmentaion model ({\sc smm}) are almost independent emission models whereas the nuclear spinodal decomposition model ({\sc bob}) shows strong correlations corresponding to the break-up of the hot dilute nucleus into nearly equal size fragments

    New approach of fragment charge correlations in 129Xe+(nat)Sn central collisions

    Full text link
    A previous analysis of the charge (Z) correlations in the ΔZ−\Delta Z- plane for Xe+Sn central collisions at 32 MeV/u has shown an enhancement in the production of equally sized fragments (low ΔZ\Delta Z) which was interpreted as an evidence for spinodal decomposition. However the signal is weak and rises the question of the estimation of the uncorrelated yield. After a critical analysis of its robustness, we propose in this paper a new technique to build the uncorrelated yield in the charge correlation function. The application of this method to Xe+Sn central collision data at 32, 39, 45 and 50 MeV/u does not show any particular enhancement of the correlation function in any ΔZ\Delta Z bin.Comment: 23 pages, 9 figures, revised version with an added figure and minor changes. To appear in Nuclear Physics

    Discriminant Analysis and Secondary-Beam Charge Recognition

    Full text link
    The discriminant-analysis method has been applied to optimize the exotic-beam charge recognition in a projectile fragmentation experiment. The experiment was carried out at the GSI using the fragment separator (FRS) to produce and select the relativistic secondary beams, and the ALADIN setup to measure their fragmentation products following collisions with Sn target nuclei. The beams of neutron poor isotopes around 124La and 107Sn were selected to study the isospin dependence of the limiting temperature of heavy nuclei by comparing with results for stable 124Sn projectiles. A dedicated detector to measure the projectile charge upstream of the reaction target was not used, and alternative methods had to be developed. The presented method, based on the multivariate discriminant analysis, allowed to increase the efficacy of charge recognition up to about 90%, which was about 20% more than achieved with the simple scalar methods.Comment: 6 pages, 7 eps figures, elsart, submitted to Nucl. Instr. and Meth.

    We only die once... but from how many causes?

    Get PDF
    Analysing causes of death provides a betterunderstanding of long-term mortality trends. InFrance, the death certificates completed by physiciansgenerally mention several causes of death (2.4 onaverage in 2011). As a general rule, just one of them,the so-called underlying cause, is taken into account.As a result, the contribution of certain diseases-endocrine diseases for example-to mortality isseverely underestimated. In a context of rising lifeexpectancy where people increasingly die not from asingle cause of death but from several, it is importantto also take these contributing causes into account

    Isomeric states in 253^{253}No

    Get PDF
    6 pagesInternational audienceIsomeric states in 253No have been investigated by conversion-electron and gamma-ray spectroscopy with the GABRIELA detection system. The 31 micro second isomer reported more than 30 years ago is found to decay to the ground state of 253No by the emission of a 167 keV M2 transition. The spin and parity of this low-lying isomeric state are established to be 5/2+. The presence of another longer-lived isomeric state is also discussed

    Multifragmentation threshold in ^{93}Nb+{nat}Mg collisions at 30 MeV/nucleon

    Get PDF
    We analyzed the 93Nb^{93}Nb on natMg^{nat}Mg reaction at 30 MeV/nucleon in the aim of disentangling binary sequential decay and multifragmentation decay close to the energy threshold, i.e. ≃3\simeq 3 MeV/nucleon. Using the backtracing technique applied to the statistical models GEMINI and SMM we reconstruct simulated charge, mass and excitation energy distributions and compare them to the experimental ones. We show that data are better described by SMM than by GEMINI in agreement with the fact that multifragmentation is responsible for fragment production at excitation energies around 3 MeV/nucleon.Comment: 16 pages, 12 figures, 5 tables Soumis \`a Nuclear Physics

    Fragmentation branching ratios of highly excited hydrocarbon molecules CnH and their cations CnH+ (n<4)

    Full text link
    We have measured fragmentation branching ratios of neutral CnH and CnH+ cations produced in high velocity (4.5 a.u) collisions between incident CnH+ cations and helium atoms. Electron capture gives rise to excited neutral species CnH and electronic excitation to excited cations CnH+. Thanks to a dedicated set-up, based on coincident detection of all fragments, the dissociation of the neutral and cationic parents were recorded separately and in a complete way. For the fragmentation of CnH, the H-loss channel is found to be dominant, as already observed by other authors. By contrast, the H-loss and C-loss channels equally dominate the two-fragment break up of CnH+ species. For these cations, we provide the first fragmentation data (n > 2). Results are also discussed in the context of astrochemistry

    On the reliability of negative heat capacity measurements

    Full text link
    A global protocol for the thermostatistical analysis of hot nuclear sources is discussed. Within our method of minimization of variances we show that the abnormal kinetic energy fluctuation signal recently reported in different experimental data (M.D'Agostino et al.-Phys. Lett. B 473 (2000) 219, N. Le Neindre et al.- contr. to the XXXVIII Bormio Winter Meeting on Nucl. Phys. (2001) 404) is a genuine signal of a first order phase transition in a finite system.Comment: 15 Postscript figures, submitted to NUCL. Phys. A on 24-apr-200

    Estimate of average freeze-out volume in multifragmentation events

    Get PDF
    An estimate of the average freeze-out volume for multifragmentation events is presented. Values of volumes are obtained by means of a simulation using the experimental charged product partitions measured by the 4pi multidetector INDRA for 129Xe central collisions on Sn at 32 AMeV incident energy. The input parameters of the simulation are tuned by means of the comparison between the experimental and simulated velocity (or energy) spectra of particles and fragments.Comment: To be published in Phys. Lett. B 12 pages, 5 figure
    • 

    corecore