1,236 research outputs found

    Rapid development of Th2 activity during T cell priming

    Get PDF
    The paradigm of T helper-1 (Th-1) and Th-2 cells developing from non-committed naĂŻve precursors is firmly established. Th1 cells are characterized by IFN production and, in mice, the selective switching to IgG2a. Conversely IL-4 production and selective switching to IgG1 and IgE characterize Th2 cells. Analysis of Th2 induction in vitro indicates that this polarization develops gradually in T cells activated by anti-CD3 in the presence of IL-4; conversely anti-CD3 and IFN induce Th1 cells. In this report, we explore evidence that indicates that the T helper cell polarization in vivo cannot solely be explained by the cytokine environment. This is provided by studying the early acquisition of Th1 and Th2 activities during responses to a mixture of Th1 and Th2-inducing antigens. It is shown that these divergent forms of T cell help can rapidly develop in cells within a single lymph node. It is argued that early polarization to show Th-1 or Th-2 behavior can be induced by signals delivered during cognate interaction between virgin T cells and dendritic cells, in the absence of type 1 or type 2 cytokines. This contrasts with the critical role of the cytokines in reinforcing the Th-phenotype and selectively expanding T helper clones

    Amphiphilic block copolymers as stabilizers in emulsion polymerization: Effects of molecular weight dispersity and evidence of self-folding behavior

    Get PDF
    Emulsion polymerizations, used to produce many commodity materials, require stabilizing agents to prevent phase separation. Incorporation of these stabilizers in the final polymer may have negative effects on product properties, so the design of new stabilizers is being actively pursued. Amphiphilic diblock copolymers are a promising type of emulsion polymerization stabilizer and are the focus of this work (Fig. 1). First, the tolerance of an amphiphilic diblock copolymer stabilizer’s performance to high molecular weight dispersity and homopolymer impurity has been investigated. Polystyrene-b-poly(acrylic acid) block copolymers were studied due to their previously demonstrated efficacy as stabilizers in emulsion polymerization, and their similarity to commercially important polystyrene-r-poly(acrylic acid) stabilizers. Neither greater molecular weight dispersity nor homopolymer impurity was found to negatively impact the stabilization performance of these block copolymers, suggesting that the economically unfavorable conditions required to achieve low molecular weight dispersity and homopolymer impurity may be avoided. We then examined novel polystyrene-b-[polystyrene-r-poly(acrylic acid)] block-random copolymers which were shown to stabilize emulsion polymerizations with up to 50 weight percent solids content, exceeding what was possible using the polystyrene-b-poly(acrylic acid) block copolymers. Of even greater significance and scientific value is that the block-random copolymers were also observed to have unusual solution behavior, self-folding rather than self-assembling, to give single chain nanoparticles. Emulsion polymerizations stabilized by these block-random copolymers had a total particle surface area which was directly proportional to the stabilizer concentration and was unaffected by polymerization kinetics. A novel “seeded-coagulative” emulsion polymerization mechanism has been proposed to explain these results, which were unexplainable by any known emulsion polymerization mechanism. Please click Additional Files below to see the full abstrac

    Biogenic Macroporosity and lts Lattice Boltzmann Method Permeability in the Karst Biscayne Aquifer

    Get PDF
    We focus on two major problems in the study of paleokarst of the Biscayne aquifer in southeastem Florida: ( 1 ), current conceptual models of karst aquifers do not adequately characterize much of the eogenetic rnacropore system within the carbonate rocks of the Biscayne aquifer, and (2) standard laboratory core-analysis rnethods cannol be used lo accurately measure the permeability of highly macroporous carbonate core samples

    Size and conformation limits to secretion of disulfide-bonded loops in autotransporter proteins

    Get PDF
    Autotransporters are a superfamily of virulence factors typified by a channel-forming C terminus that facilitates translocation of the functional N-terminal passenger domain across the outer membrane of Gram-negative bacteria. This final step in the secretion of autotransporters requires a translocation-competent conformation for the passenger domain that differs markedly from the structure of the fully folded secreted protein. The nature of the translocation-competent conformation remains controversial, in particular whether the passenger domain can adopt secondary structural motifs, such as disulfide- bonded segments, while maintaining a secretion-competent state. Here, we used the endogenous and closely spaced cysteine residues of the plasmid-encoded toxin (Pet) from enteroaggregative Escherichia coli to investigate the effect of disulfide bond-induced folding on translocation of an auto-transporter passenger domain. We reveal that rigid structural elements within disulfide-bonded segments are resistant to autotransporter-mediated secretion. We define the size limit of disulfide-bonded segments tolerated by the autotransporter system demonstrating that, when present, cysteine pairs are intrinsically closely spaced to prevent congestion of the translocator pore by large disulfide-bonded regions. These latter data strongly support the hairpin mode of autotransporter biogenesis

    Size and conformation limits to secretion of disulfide-bonded loops in autotransporter proteins

    Get PDF
    Autotransporters are a superfamily of virulence factors typified by a channel-forming C terminus that facilitates translocation of the functional N-terminal passenger domain across the outer membrane of Gram-negative bacteria. This final step in the secretion of autotransporters requires a translocation-competent conformation for the passenger domain that differs markedly from the structure of the fully folded secreted protein. The nature of the translocation-competent conformation remains controversial, in particular whether the passenger domain can adopt secondary structural motifs, such as disulfide- bonded segments, while maintaining a secretion-competent state. Here, we used the endogenous and closely spaced cysteine residues of the plasmid-encoded toxin (Pet) from enteroaggregative Escherichia coli to investigate the effect of disulfide bond-induced folding on translocation of an auto-transporter passenger domain. We reveal that rigid structural elements within disulfide-bonded segments are resistant to autotransporter-mediated secretion. We define the size limit of disulfide-bonded segments tolerated by the autotransporter system demonstrating that, when present, cysteine pairs are intrinsically closely spaced to prevent congestion of the translocator pore by large disulfide-bonded regions. These latter data strongly support the hairpin mode of autotransporter biogenesis

    Optimization of Indium Bump Morphology for Improved Flip Chip Devices

    Get PDF
    Flip-chip hybridization, also known as bump bonding, is a packaging technique for microelectronic devices that directly connects an active element or detector to a substrate readout face-to-face, eliminating the need for wire bonding. In order to make conductive links between the two parts, a solder material is used between the bond pads on each side. Solder bumps, composed of indium metal, are typically deposited by thermal evaporation onto the active regions of the device and substrate. While indium bump technology has been a part of the electronic interconnect process field for many years and has been extensively employed in the infrared imager industry, obtaining a reliable, high-yield process for high-density patterns of bumps can be quite difficult. Under the right conditions, a moderate hydrogen plasma exposure can raise the temperature of the indium bump to the point where it can flow. This flow can result in a desirable shape where indium will efficiently wet the metal contact pad to provide good electrical contact to the underlying readout or imager circuit. However, it is extremely important to carefully control this process as the intensity of the hydrogen plasma treatment dramatically affects the indium bump morphology. To ensure the fine-tuning of this reflow process, it is necessary to have realtime feedback on the status of the bumps. With an appropriately placed viewport in a plasma chamber, one can image a small field (a square of approximately 5 millimeters on each side) of the bumps (10-20 microns in size) during the hydrogen plasma reflow process. By monitoring the shape of the bumps in real time using a video camera mounted to a telescoping 12 magnifying zoom lens and associated optical elements, an engineer can precisely determine when the reflow of the bumps has occurred, and can shut off the plasma before evaporation or de-wetting takes place

    Rosetta-Alice Observations of Exospheric Hydrogen and Oxygen on Mars

    Full text link
    The European Space Agency's Rosetta spacecraft, en route to a 2014 encounter with comet 67P/Churyumov-Gerasimenko, made a gravity assist swing-by of Mars on 25 February 2007, closest approach being at 01:54UT. The Alice instrument on board Rosetta, a lightweight far-ultraviolet imaging spectrograph optimized for in situ cometary spectroscopy in the 750-2000 A spectral band, was used to study the daytime Mars upper atmosphere including emissions from exospheric hydrogen and oxygen. Offset pointing, obtained five hours before closest approach, enabled us to detect and map the HI Lyman-alpha and Lyman-beta emissions from exospheric hydrogen out beyond 30,000 km from the planet's center. These data are fit with a Chamberlain exospheric model from which we derive the hydrogen density at the 200 km exobase and the H escape flux. The results are comparable to those found from the the Ultraviolet Spectrometer experiment on the Mariner 6 and 7 fly-bys of Mars in 1969. Atomic oxygen emission at 1304 A is detected at altitudes of 400 to 1000 km above the limb during limb scans shortly after closest approach. However, the derived oxygen scale height is not consistent with recent models of oxygen escape based on the production of suprathermal oxygen atoms by the dissociative recombination of O2+.Comment: 17 pages, 8 figures, accepted for publication in Icaru
    • 

    corecore