123 research outputs found

    On a model mechanism for the spatial patterning of teeth primordia in the Alligator

    Get PDF
    We propose a model mechanism for the initiation and spatial positioning of teeth primordia in the alligator,Alligator mississippiensis. Detailed embryological studies by Westergaard & Ferguson (1986, 1987, 1990) show that jaw growth plays a crucial role in the developmental patterning of the tooth initiation process. Based on biological data we develop a reaction-diffusion mechanism, which crucially includes domain growth. The model can reproduce the spatial pattern development of the first seven teeth primordia in the lower half jaw ofA. mississippiensis. The results for the precise spatio-temporal sequence compare well with detailed developmental experiments

    Variation in the chemical composition, physical characteristics and energy values of cereal grains produced in the Western Cape area of South Africa

    Get PDF
    Grain samples were produced at 10 different locations in the Western Cape region of South Africa, on 2.1 m x 6 m experimental plots, over a period of three years. Twenty different cereal grain cultivars were used in the study. A randomised square experimental design with four replicates per sample was used. An area of 1.35 m x 5 m from each plot was harvested during 1994, 1995 and 1996 and the yield was determined. Thousand seed mass (TSM) and hectolitre mass (HLM) were also determined. Samples were analysed for dry matter (DM), ash, crude protein (CP), ether extract (EE), neutral detergent fibre (NDF), acid detergent fibre (ADF) and in vitro organic matter digestibility (IVOMD). Digestible energy values (DE) for pigs were determined with a mobile nylon bag technique, while non-structural carbohydrate values (NSC) were calculated. In the first analysis, cultivars were compared by a one-way analysis of variance, followed by pooling of grain type data. Naked oats had the highest DE value, and the respective values (DM basis) for naked oats, wheat, triticale, 2-row brewer's barley, 6-row feed barley and oats were 18.0, 16.0, 15.8, 14.9, 14.4, and 12.6 MJ/kg DM. The high EE value of naked oats (97 g/kg) might be partly responsible for the high DE value. The 6-row and 2-row naked barley cultivars had the highest IVOMD (946 g/kg and 944 g/kg), followed by wheat (910 g/kg), triticale (905 g/kg), naked oats (899 g/kg), 2-row brewer's barley (882 g/kg), 6-row feed barley (844 g/kg) and oats (671 g/kg). Considerable variation was found between samples within a cultivar for DE and IVOMD. Two-row naked barley had the highest mean CP value (159 g/kg) followed by naked oats (159 g/kg), 6-row naked barley (154 g/kg), wheat (148 g/kg), triticale (146 g/kg), oats (143 g/kg), 2-row brewer's barley (136 g/kg) and 6-row feed barley (135 g/kg) on DM basis. Triticale had the highest yield, with naked oats and barley cultivars having the lowest yield. Keywords: Cereal grains, Chemical composition, Energy value South African Journal of Animal Science Vol.33(2) 2003: 117-12

    A new Paecilomyces from wooden utility poles in South Africa

    Get PDF
    During a survey of fungi on electricity utility poles in South Africa, a diverse range of fungi were discovered. Paecilomyces was frequently isolated, with five species identified using ITS and β-tubulin (BenA) sequences. These were P. brunneolus, P. dactylethromorphus, P. lecythidis, P. paravariotii and a potential new species. The genomes of 30 of these strains were subsequently sequenced and used in a phylogenomic analysis with 45 previously published genomes of the genus. Phylogenetic analyses were also conducted using ITS, BenA, calmodulin (CaM), RNA polymerase II second largest subunit (RPB2), RNA polymerase II largest subunit (RPB1), the genes coding for the theta subunit of the TCP-1 chaperonin complex (Cct8), and for a putative ribosome biogenesis protein (Tsr1). Both phylogenomic and phylogenetic analyses supported the 15 Paecilomyces species currently accepted and confirmed the novelty of the new species, which we describe as P. lignorum. The latter is the sister species of P. brunneolus and belongs to a clade also containing P. variotii and P. paravariotii. Morphologically, the new species produces longer ellipsoidal conidia and grows more restricted on malt extract agar at 30 °C compared to its closest relatives.The National Research Foundation (NRF), Tree Protection Co-operative Programme (TPCP), the THRIP initiative of the Department of Trade and Industry (DTI) and the European Union’s Horizon 2020 research and innovation program (RISE) under the Marie Skłodowska-Curie grant.https://fuse-journal.orghj2024BiochemistryForestry and Agricultural Biotechnology Institute (FABI)GeneticsMicrobiology and Plant PathologySDG-15:Life on lan

    Phylogenetic species recognition and hybridisation in Lasiodiplodia : a case study on species from baobabs

    Get PDF
    Lasiodiplodia species (Botryosphaeriaceae, Ascomycota) infect a wide range of typically woody plants on which they are associated with many different disease symptoms. In this study, we determined the identity of Lasiodiplodia isolates obtained from baobab (Adansonia species) trees in Africa and reviewed the molecular markers used to describe Lasiodiplodia species. Publicly available and newly produced sequence data for some of the type strains of Lasiodiplodia species showed incongruence amongst phylogenies of five nuclear loci. We conclude that several of the previously described Lasiodiplodia species are hybrids of other species. Isolates from baobab trees in Africa included nine species of Lasiodiplodia and two hybrid species. Inoculation trials with the most common Lasiodiplodia species collected from these trees produced significant lesions on young baobab trees. There was also variation in aggressiveness amongst isolates from the same species. The apparently widespread tendency of Lasiodiplodia species to hybridise demands that phylogenies from multiple loci (more than two and preferably four or more) are compared for congruence prior to new species being described. This will avoid hybrids being incorrectly described as new taxa, as has clearly occurred in the past.Members of the Tree Protection Co-operative Programme (TPCP), the NRF-DST Centre of Excellence in Tree Health Biotechnology (CTHB), and the University of Pretoria, South Africa.http://www.elsevier.com/locate/funbio2018-04-30Plant ScienceForestry and Agricultural Biotechnology Institute (FABI)Genetic

    Fungi associated with black mould on baobab trees in southern Africa

    Get PDF
    There have been numerous reports in the scientific and popular literature suggesting that African baobab (Adansonia digitata) trees are dying, with symptoms including a black mould on their bark. The aim of this study was to determine the identity of the fungi causing this black mould and to consider whether they might be affecting the health of trees. The fungi were identified by sequencing directly from mycelium on the infected tissue as well as from cultures on agar. Sequence data for the ITS region of the rDNA resulted in the identification of four fungi including Aureobasidium pullulans, Toxicocladosporium irritans and a new species of Rachicladosporium described here as Rachicladosporium africanum. A single isolate of an unknown Cladosporium sp. was also found. These fungi, referred to here as black mould, are not true sooty mould fungi and they were shown to penetrate below the bark of infected tissue, causing a distinct host reaction. Although infections can lead to dieback of small twigs on severely infected branches, the mould was not found to kill trees.Members of the Tree Protection Co-operative Programme (TPCP), the NRF-DST Centre of Excellence in Tree Health Biotechnology (CTHB), and the University of Pretoria, South Africa.http://link.springer.com/journal/104822016-05-03hb201

    Partial differential equations for self-organization in cellular and developmental biology

    Get PDF
    Understanding the mechanisms governing and regulating the emergence of structure and heterogeneity within cellular systems, such as the developing embryo, represents a multiscale challenge typifying current integrative biology research, namely, explaining the macroscale behaviour of a system from microscale dynamics. This review will focus upon modelling how cell-based dynamics orchestrate the emergence of higher level structure. After surveying representative biological examples and the models used to describe them, we will assess how developments at the scale of molecular biology have impacted on current theoretical frameworks, and the new modelling opportunities that are emerging as a result. We shall restrict our survey of mathematical approaches to partial differential equations and the tools required for their analysis. We will discuss the gap between the modelling abstraction and biological reality, the challenges this presents and highlight some open problems in the field

    Modelling the spatial patterning of the primordia in the lower jaw of alligator mississippiensis

    Get PDF
    We propose a model mechanism for the initiation and spatial positioning of teeth primordia in the alligator, Alligator mississippiensis. Detailed embryological studies12–14 have shown that jaw growth plays a crucial role in the developmental patterning of the tooth initiation process. The development of the spatial pattern occurs on a timescale comparable to jaw growth. Based on biological data we develop a dynamic patterning mechanism, which crucially includes domain growth. The mechanism can reproduce the spatial pattern development of the first seven teeth primordia in the lower jaw of A. mississippiensis. The results for the precise spatio-temporal sequence compare well with experiment

    From segment to somite: segmentation to epithelialization analyzed within quantitative frameworks

    Get PDF
    One of the most visually striking patterns in the early developing embryo is somite segmentation. Somites form as repeated, periodic structures in pairs along nearly the entire caudal vertebrate axis. The morphological process involves short- and long-range signals that drive cell rearrangements and cell shaping to create discrete, epithelialized segments. Key to developing novel strategies to prevent somite birth defects that involve axial bone and skeletal muscle development is understanding how the molecular choreography is coordinated across multiple spatial scales and in a repeating temporal manner. Mathematical models have emerged as useful tools to integrate spatiotemporal data and simulate model mechanisms to provide unique insights into somite pattern formation. In this short review, we present two quantitative frameworks that address the morphogenesis from segment to somite and discuss recent data of segmentation and epithelialization

    Fungal Planet description sheets: 154–213

    Get PDF
    Novel species of microfungi described in the present study include the following from South Africa: Camarosporium aloes, Phaeococcomyces aloes and Phoma aloes from Aloe, C. psoraleae, Diaporthe psoraleae and D. psoraleae-pinnatae from Psoralea, Colletotrichum euphorbiae from Euphorbia, Coniothyrium prosopidis and Peyronellaea prosopidis from Prosopis, Diaporthe cassines from Cassine, D. diospyricola from Diospyros, Diaporthe maytenicola from Maytenus, Harknessia proteae from Protea, Neofusicoccum ursorum and N. cryptoaustrale from Eucalyptus, Ochrocladosporium adansoniae from Adansonia, Pilidium pseudoconcavum from Greyia radlkoferi, Stagonospora pseudopaludosa from Phragmites and Toxicocladosporium ficiniae from Ficinia. Several species were also described from Thailand, namely: Chaetopsina pini and C. pinicola from Pinus spp., Myrmecridium thailandicum from reed litter, Passalora pseudotithoniae from Tithonia, Pallidocercospora ventilago from Ventilago, Pyricularia bothriochloae from Bothriochloa and Sphaerulina rhododendricola from Rhododendron. Novelties from Spain include Cladophialophora multiseptata, Knufia tsunedae and Pleuroascus rectipilus from soil and Cyphellophora catalaunica from river sediments. Species from the USA include Bipolaris drechsleri from Microstegium, Calonectria blephiliae from Blephilia, Kellermania macrospora (epitype) and K. pseudoyuccigena from Yucca. Three new species are described from Mexico, namely Neophaeosphaeria agaves and K. agaves from Agave and Phytophthora ipomoeae from Ipomoea. Other African species include Calonectria mossambicensis from Eucalyptus (Mozambique), Harzia cameroonensis from an unknown creeper (Cameroon), Mastigosporella anisophylleae from Anisophyllea (Zambia) and Teratosphaeria terminaliae from Terminalia (Zimbabwe). Species from Europe include Auxarthron longisporum from forest soil (Portugal), Discosia pseudoartocreas from Tilia (Austria), Paraconiothyrium polonense and P. lycopodinum from Lycopodium (Poland) and Stachybotrys oleronensis from Iris (France). Two species of Chrysosporium are described from Antarctica, namely C. magnasporum and C. oceanitesii. Finally, Licea xanthospora is described from Australia, Hypochnicium huinayensis from Chile and Custingophora blanchettei from Uruguay. Novel genera of Ascomycetes include Neomycosphaerella from Pseudopentameris macrantha (South Africa), and Paramycosphaerella from Brachystegia sp. (Zimbabwe). Novel hyphomycete genera include Pseudocatenomycopsis from Rothmannia (Zambia), Neopseudocercospora from Terminalia (Zambia) and Neodeightoniella from Phragmites (South Africa), while Dimorphiopsis from Brachystegia (Zambia) represents a novel coelomycetous genus. Furthermore, Alanphillipsia is introduced as a new genus in the Botryosphaeriaceae with four species, A. aloes, A. aloeigena and A. aloetica from Aloe spp. and A. euphorbiae from Euphorbia sp. (South Africa). A new combination is also proposed for Brachysporium torulosum (Deightoniella black tip of banana) as Corynespora torulosa. Morphological and culture characteristics along with ITS DNA barcodes are provided for all taxa

    Evolutionary Epidemiology of Drug-Resistance in Space

    Get PDF
    The spread of drug-resistant parasites erodes the efficacy of therapeutic treatments against many infectious diseases and is a major threat of the 21st century. The evolution of drug-resistance depends, among other things, on how the treatments are administered at the population level. “Resistance management” consists of finding optimal treatment strategies that both reduce the consequence of an infection at the individual host level, and limit the spread of drug-resistance in the pathogen population. Several studies have focused on the effect of mixing different treatments, or of alternating them in time. Here, we analyze another strategy, where the use of the drug varies spatially: there are places where no one receives any treatment. We find that such a spatial heterogeneity can totally prevent the rise of drug-resistance, provided that the size of treated patches is below a critical threshold. The range of parasite dispersal, the relative costs and benefits of being drug-resistant compared to being drug-sensitive, and the duration of an infection with drug-resistant parasites are the main factors determining the value of this threshold. Our analysis thus provides some general guidance regarding the optimal spatial use of drugs to prevent or limit the evolution of drug-resistance
    • …
    corecore