58 research outputs found

    Disentangling protein and lipid interactions that control a molecular switch in photosynthetic light harvesting

    Get PDF
    In the photosynthetic apparatus of plants and algae, the major Light-Harvesting Complexes (LHCII) collect excitations and funnel these to the photosynthetic reaction center where charge separation takes place. In excess light conditions, remodeling of the photosynthetic membrane and protein conformational changes produces a photoprotective state in which excitations are rapidly quenched to avoid photodamage. The quenched states are associated with protein aggregation, however the LHCII complexes are also proposed to have an intrinsic capacity to shift between light harvesting and fluorescence-quenched conformational states. To disentangle the effects of protein-protein and protein-lipid interactions on the LHCII photoprotective switch, we compared the structural and fluorescent properties of LHCII lipid nanodiscs and proteoliposomes with very low protein -to-lipid ratios. We demonstrate that LHCII proteins adapta fully fluorescent state in nanodiscs and in proteoliposomes with highly diluted protein densities. Increasing the protein density induces a transition into a mildly-quenched state that reaches a plateau at a molar protein-to-lipid ratio of 0.001 and has a fluorescence yield reminiscent of the light-harvesting state in vivo. The low onset for quenching strongly suggests that LHCII-LHCII attractive interactions occur inside membranes. The transition at low protein densities does not involve strong changes in the excitonic circular-dichroism spectrum and is distinct from a transition occurring at very high protein densities that comprises strong fluorescence quenching and circular-dichroism spectral changes involving chlorophyll 611 and 612, correlating with proposed quencher sites of the photoprotective mechanism

    In vitro investigation of the photoprotection mechanism of Light Harvesting Complex II

    Get PDF
    Solar energy is used by photosynthetic organisms to drive energy required cellular processes. Is absorbed by two groups of pigments, located in the LHCs. These proteins are essential for the performance of photosynthesis, because they are involved in harvesting the light and because they protect the photosynthetic system from excess of light that cause photodamage. I performed in vitro studies mimicking the two functions of LHCII by inserting the protein in nanodiscs and in liposomes. I demonstrate that Chl excitation quenching is dependent on protein-protein interactions. I investigated the specific interactions of LHCII with PsbS. The fluorescence study of our minimal membrane models strongly suggests that the pH-dependent role of PsbS lies in creating membrane rearrangements and supercomplex remodeling that could facilitate LHCII aggregation quenching. I successfully produced 13C lutein-rLhcb1 protein in detergent, mimicking the unquenched state, and protein aggregates, mimicking the quenched state, were biochemically and spectroscopically characterized and further analysed with solid state NMR.Ring current shifts of the lutein head signals indicate that the heads are in close proximity to specific Chls (Chl a610 and Chl a602), providing for the first-time structural information about lutein-Chl interactions in LHCII in its unquenched state. Solid state NMR/Biophysical Organic Chemistr

    Synthesis, biophysical characterization and anti-HIV activity of d(TG3AG) Quadruplexes bearing hydrophobic tails at the 5'-end

    Get PDF
    Novel conjugated G-quadruplex-forming d(TG3AG) oligonucleotides, linked to hydrophobic groups through phosphodiester bonds at 50-end, have been synthesized as potential anti-HIV aptamers, via a fully automated, online phosphoramidite-based solid-phase strategy. Conjugated quadruplexes showed pronounced anti-HIV activity with some preference for HIV-1, with inhibitory activity invariably in the low micromolar range. The CD and DSC monitored thermal denaturation studies on the resulting quadruplexes, indicated the insertion of lipophilic residue at the 50-end, conferring always improved stability to the quadruplex complex (20 < DTm < 40 C). The data suggest no direct functional relationship between the thermal stability and anti-HIV activity of the folded conjugated G-quartets. It would appear that the nature of the residue at 50 end of the d(TG3AG) quadruplexes plays an important role in the thermodynamic stabilization but a minor influence on the anti-HIV activity. Moreover, a detailed CD and DSC analyses indicate a monophasic behaviour for sequences I and V, while for ODNs (II–IV) clearly show that these quadruplex structures deviate from simple two-state melting, supporting the hypothesis that intermediate states along the dissociation pathway may exis

    Lipid accumulation in human breast cancer cells injured by iron depletors

    Get PDF
    Background: Current insights into the effects of iron deficiency in tumour cells are not commensurate with the importance of iron in cell metabolism. Studies have predominantly focused on the effects of oxygen or glucose scarcity in tumour cells, while attributing insufficient emphasis to the inadequate supply of iron in hypoxic regions. Cellular responses to iron deficiency and hypoxia are interlinked and may strongly affect tumour metabolism. Methods: We examined the morphological, proteomic, and metabolic effects induced by two iron chelators-deferoxamine (DFO) and di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT)-on MDA-MB-231 and MDA-MB-157 breast cancer cells. Results: These chelators induced a cytoplasmic massive vacuolation and accumulation of lipid droplets (LDs), eventually followed by implosive, non-autophagic, and non-apoptotic death similar to methuosis. Vacuoles and LDs are generated by expansion of the endoplasmic reticulum (ER) based on extracellular fluid import, which includes unsaturated fatty acids that accumulate in LDs. Typical physiological phenomena associated with hypoxia are observed, such as inhibition of translation, mitochondrial dysfunction, and metabolic remodelling. These survival-oriented changes are associated with a greater expression of epithelial/mesenchymal transcription markers. Conclusions: Iron starvation induces a hypoxia-like program able to scavenge nutrients from the extracellular environment, and cells assume a hypertrophic phenotype. Such survival strategy is accompanied by the ER-dependent massive cytoplasmic vacuolization, mitochondrial dysfunctions, and LD accumulation and then evolves into cell death. LDs containing a greater proportion of unsaturated lipids are released as a consequence of cell death. The consequence of the disruption of iron metabolism in tumour tissue and the effects of LDs on intercellular communication, cancer-inflammation axis, and immunity remain to be explored. Considering the potential benefits, these are crucial subjects for future mechanistic and clinical studies

    Nanohaloarchaea as beneficiaries of xylan degradation by haloarchaea

    Get PDF
    Climate change, desertification, salinisation of soils and the changing hydrology of the Earth are creating or modifying microbial habitats at all scales including the oceans, saline groundwaters and brine lakes. In environments that are saline or hypersaline, the biodegradation of recalcitrant plant and animal polysaccharides can be inhibited by salt-induced microbial stress and/or by limitation of the metabolic capabilities of halophilic microbes. We recently demonstrated that the chitinolytic haloarchaeon Halomicrobium can serve as the host for an ectosymbiont, nanohaloarchaeon ‘Candidatus Nanohalobium constans’. Here, we consider whether nanohaloarchaea can benefit from the haloarchaea-mediated degradation of xylan, a major hemicellulose component of wood. Using samples of natural evaporitic brines and anthropogenic solar salterns, we describe genome-inferred trophic relations in two extremely halophilic xylan-degrading three-member consortia. We succeeded in genome assembly and closure for all members of both xylan-degrading cultures and elucidated the respective food chains within these consortia. We provide evidence that ectosymbiontic nanohaloarchaea is an active ecophysiological component of extremely halophilic xylan-degrading communities (although by proxy) in hypersaline environments. In each consortium, nanohaloarchaea occur as ectosymbionts of Haloferax, which in turn act as scavenger of oligosaccharides produced by xylan-hydrolysing Halorhabdus. We further obtained and characterised the nanohaloarchaea–host associations using microscopy, multi-omics and cultivation approaches. The current study also doubled culturable nanohaloarchaeal symbionts and demonstrated that these enigmatic nano-sized archaea can be readily isolated in binary co-cultures using an appropriate enrichment strategy. We discuss the implications of xylan degradation by halophiles in biotechnology and for the United Nation's Sustainable Development Goals

    Developmental Issues in School-Based Aggression Prevention from a Social-Cognitive Perspective

    Full text link
    Contemporary research on the development and prevention of aggressive behavior in childhood and adolescence emphasizes the importance of social-cognitive factors such as perceptual biases, problem-solving skills, and social-moral beliefs in the maintenance of aggression. Indeed, school-based social-cognitive intervention approaches have been identified as best practices by the Centers for Disease Control and Prevention. However, because child age is an important covariate of both intervention effectiveness and social-cognitive ability, school-based prevention program designers should keep in mind a number of issues identified through developmental research. In this paper, we review the social-cognitive model of aggressive behavior development as applied to prevention programming. We then discuss some of the ways in which the broader developmental research base can inform the design of aggression prevention programs.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45098/1/10935_2005_Article_5.pd

    Disentangling protein and lipid interactions that control a molecular switch in photosynthetic light harvesting

    No full text
    In the photosynthetic apparatus of plants and algae, the major Light-Harvesting Complexes (LHCII) collect excitations and funnel these to the photosynthetic reaction center where charge separation takes place. In excess light conditions, remodeling of the photosynthetic membrane and protein conformational changes produces a photoprotective state in which excitations are rapidly quenched to avoid photodamage. The quenched states are associated with protein aggregation, however the LHCII complexes are also proposed to have an intrinsic capacity to shift between light harvesting and fluorescence-quenched conformational states. To disentangle the effects of protein-protein and protein-lipid interactions on the LHCII photoprotective switch, we compared the structural and fluorescent properties of LHCII lipid nanodiscs and proteoliposomes with very low protein -to-lipid ratios. We demonstrate that LHCII proteins adapta fully fluorescent state in nanodiscs and in proteoliposomes with highly diluted protein densities. Increasing the protein density induces a transition into a mildly-quenched state that reaches a plateau at a molar protein-to-lipid ratio of 0.001 and has a fluorescence yield reminiscent of the light-harvesting state in vivo. The low onset for quenching strongly suggests that LHCII-LHCII attractive interactions occur inside membranes. The transition at low protein densities does not involve strong changes in the excitonic circular-dichroism spectrum and is distinct from a transition occurring at very high protein densities that comprises strong fluorescence quenching and circular-dichroism spectral changes involving chlorophyll 611 and 612, correlating with proposed quencher sites of the photoprotective mechanisms</p

    Seasonal variability of phytoplankton fluorescence in relation to the Straits of Messina (Sicily) tidal upwelling

    Get PDF
    Abstract. In the Straits of Messina, large gradients of tidal displacements, as well as the topographic constrictions, determine the upwelling of deeper waters in the surface layer. This work describes the seasonal variability in the surface distribution of phytoplankton biomass depending on the upwelling phenomena. Temperature, salinity, nitrates and phytoplankton fluorescence were measured in 1994 and 1995 by continuous underway surface real-time measurements onboard dedicated research boats. Each survey was performed following the dynamic phases of flooding and ebbing tides. Tidal currents are essentially southward during high tide and northward during low tide. During the low water slack tide, large spatial gradients of physical-chemical and biological parameters were found, while at the high water slack tide, a diffused phytoplankto

    Lipid accumulation in human breast cancer cells injured by iron depletors

    Get PDF
    Background: Current insights into the effects of iron deficiency in tumour cells are not commensurate with the importance of iron in cell metabolism. Studies have predominantly focused on the effects of oxygen or glucose scarcity in tumour cells, while attributing insufficient emphasis to the inadequate supply of iron in hypoxic regions. Cellular responses to iron deficiency and hypoxia are interlinked and may strongly affect tumour metabolism. Methods: We examined the morphological, proteomic, and metabolic effects induced by two iron chelators-deferoxamine (DFO) and di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT)-on MDA-MB-231 and MDA-MB-157 breast cancer cells. Results: These chelators induced a cytoplasmic massive vacuolation and accumulation of lipid droplets (LDs), eventually followed by implosive, non-autophagic, and non-apoptotic death similar to methuosis. Vacuoles and LDs are generated by expansion of the endoplasmic reticulum (ER) based on extracellular fluid import, which includes unsaturated fatty acids that accumulate in LDs. Typical physiological phenomena associated with hypoxia are observed, such as inhibition of translation, mitochondrial dysfunction, and metabolic remodelling. These survival-oriented changes are associated with a greater expression of epithelial/mesenchymal transcription markers. Conclusions: Iron starvation induces a hypoxia-like program able to scavenge nutrients from the extracellular environment, and cells assume a hypertrophic phenotype. Such survival strategy is accompanied by the ER-dependent massive cytoplasmic vacuolization, mitochondrial dysfunctions, and LD accumulation and then evolves into cell death. LDs containing a greater proportion of unsaturated lipids are released as a consequence of cell death. The consequence of the disruption of iron metabolism in tumour tissue and the effects of LDs on intercellular communication, cancer-inflammation axis, and immunity remain to be explored. Considering the potential benefits, these are crucial subjects for future mechanistic and clinical studies
    • …
    corecore