6 research outputs found

    Roadmap on energy harvesting materials

    Get PDF
    Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere

    Characterization of P3HT:thermoplastic blends prepared via direct-ink writing

    Full text link
    Les dispositifs optoélectroniques sont devenus un élément essentiel de la technologie moderne visant à exploiter des applications de niche pour l'électronique flexible à base de composés organiques. Jusqu'à présent, les films minces préparés à partir de composés polymères conjugués ont été les principaux concurrents pour les dispositifs optoélectroniques organiques. Avec l'apparition de nouvelles méthodes de mise en œuvre et de nouveaux besoins électroniques, les méthodes de fabrication additive des matériaux optoélectroniques suscitent de plus en plus d'intérêt. Malgré l'intérêt croissant et la variété des méthodes de mise en œuvre tridimensionnelles, on comprend encore mal l'impact de la technique de mise en œuvre sur l'organisation moléculaire des échantillons. Ici, une étude est présentée impliquant l’impression 3D assistée par évaporation de solvant et le poly(3-hexylthiophène) (P3HT) qui est bien décrit dans la littérature, et, dans ce cas-ci, mélangé à diverses matrices thermoplastiques. Dans un premier temps, les matrices thermoplastiques employées, i.e. le polystyrène (PS), le polypropylène carbonate (PPC), le polyméthacrylate de méthyle (PMMA) et le polyoxyéthylène (PEO) sont évaluées en fonction de leurs propriétés rhéologiques et de leur imprimabilité en 3D, qui ne sont que très peu affectées par l'introduction du P3HT. Par la suite, le P3HT à régiorégularité élevée et faible est mélangé dans chacune des matrices thermoplastiques. L'organisation moléculaire des deux composantes dans les architectures imprimées a été évaluée par des techniques de spectroscopie UV-visible et de fluorescence. Les phases en présence ont été analysées à l'aide d’analyse calorimétrique différentielle à balayage, de microscopie optique polarisée et de diffraction des rayons X, ce qui a également permis d'analyser l'état d'agrégation du P3HT par rapport à celui retrouvé dans les films minces. Il est intéressant de noter que les propriétés optiques montrent peu ou pas de différence entre les architectures 3D et les films minces, ce qui indique vraisemblablement que l'efficacité d'un dispositif optoélectronique imprimé en 3D ne serait pas affectée par l’impression 3D assistée par évaporation de solvant. Cette étude pourrait permettre de mieux comprendre comment il serait possible de mettre au point des dispositifs optoélectroniques, y compris des photoconducteurs, des photovoltaïques organiques, des transistors à effet de champ organiques, etc. à l’aide de techniques de fabrication additive, ce qui ouvrira la voie à une nouvelle ère en électronique organique imprimée en trois dimensions.Optoelectronic devices have become a staple in modern day technology which aims to transition to flexible electronics that are developed from organic compounds. To date, 2-dimensional films of conjugated polymer compounds have been the main contender for organic optoelectronic devices. As new processing methods and electronic needs become present in the modern day, a focus on 3-dimensional processing methods of optoelectronic materials have become increasingly of interest. With the increasing interest and variety of 3-dimensional processing methods, there is little understanding of how the processing technique molecularly affects the final product. Herein is presented a study on the extrusion-based, direct-ink writing of the well understood poly(3-hexylthiophene-2,5-diyl) (P3HT) blended into a variety of thermoplastic matrices. Initially the pristine thermoplastics of polystyrene (PS), poly(propylene carbonate) (PPC), poly(methyl methacrylate) (PMMA), and poly(ethylene oxide) (PEO) were evaluated based on their rheological and printable properties which are negligibly affected by the introduction of P3HT. Subsequently, after the blending of both high and low regioregular P3HT into each of the thermoplastic matrices, the printed architectures were further analyzed by X-Ray diffraction, UV-vis, and fluorescence techniques to assess the aggregation state of P3HT in comparison to 2-dimensional processed films. Interestingly, the electronic properties show little to no difference between 3-dimensional architectures and 2-dimensional films, which presumably indicates that the efficiency would not be affected by the direct-ink writing technique. This study could contribute to the beginning of producing optoelectronic devices, including photoconductors, organic photovoltaic and organic field effect transistors, in 3-dimensions resulting in a new age of electronics

    Roadmap on energy harvesting materials

    No full text
    Abstract Ambient energy harvesting has great potential to contribute to sustainable development and address growing environmental challenges. Converting waste energy from energy-intensive processes and systems (e.g. combustion engines and furnaces) is crucial to reducing their environmental impact and achieving net-zero emissions. Compact energy harvesters will also be key to powering the exponentially growing smart devices ecosystem that is part of the Internet of Things, thus enabling futuristic applications that can improve our quality of life (e.g. smart homes, smart cities, smart manufacturing, and smart healthcare). To achieve these goals, innovative materials are needed to efficiently convert ambient energy into electricity through various physical mechanisms, such as the photovoltaic effect, thermoelectricity, piezoelectricity, triboelectricity, and radiofrequency wireless power transfer. By bringing together the perspectives of experts in various types of energy harvesting materials, this Roadmap provides extensive insights into recent advances and present challenges in the field. Additionally, the Roadmap analyses the key performance metrics of these technologies in relation to their ultimate energy conversion limits. Building on these insights, the Roadmap outlines promising directions for future research to fully harness the potential of energy harvesting materials for green energy anytime, anywhere
    corecore