24 research outputs found

    Chronic Fatigue Syndrome at Age 16 Years

    Get PDF
    BACKGROUND:In the Avon Longitudinal Study of Parents and Children (ALSPAC) birth cohort, chronic disabling fatigue lasting ≥6 months affected 1.3% of 13-year-olds, was equally common in boys and girls, and became more prevalent with increasing family adversity.METHODS:ALSPAC data were used to estimate the prevalence of chronic fatigue syndrome (CFS) at age 16 years, defined by parental report of unexplained disabling fatigue lasting ≥6 months. We investigated gender and a composite 14-item family adversity index as risk factors. School absence data were obtained from the National Pupil Database. Multiple imputation was used to address bias caused by missing data.RESULTS:The prevalence of CFS was 1.86% (95% confidence interval [CI]: 1.47 to 2.24). After excluding children with high levels of depressive symptoms, the prevalence was 0.60% (95% CI: 0.37 to 0.84). Authorized school absences were much higher (mean difference: 35.6 [95% CI: 26.4 to 44.9] half-day sessions per academic year) and reported depressive symptoms were much more likely (odds ratio [OR]: 11.0 [95% CI: 5.92 to 20.4]) in children with CFS than in those without CFS. Female gender (OR: 1.95 [95% CI: 1.33 to 2.86]) and family adversity (OR: 1.20 [95% CI: 1.01 to 1.42] per unit family adversity index) were also associated with CFS.CONCLUSIONS:CFS affected 1.9% of 16-year-olds in a UK birth cohort and was positively associated with higher family adversity. Gender was a risk factor at age 16 years but not at age 13 years or in 16-year-olds without high levels of depressive symptoms.</jats:sec

    The role of healthcare professionals in encouraging parents to see and hold their stillborn baby: a meta-synthesis of qualitative studies.

    Get PDF
    Background: Globally, during 2013 there were three million recorded stillbirths. Where clinical guidelines exist some recommend that professionals do not encourage parental contact. The guidance is based on quantitative evidence that seeing and holding the baby is not beneficial for everyone, but has been challenged by bereaved parents' organisations. We aim to inform future guideline development through a synthesis of qualitative studies reporting data relevant to the research question; how does the approach of healthcare professionals to seeing and holding the baby following stillbirth impact parents views and experiences? Methods/Findings: Using a predetermined search strategy of PubMed and PsychINFO we identified robust qualitative studies reporting bereaved parental views and/or experiences relating to seeing and holding their stillborn baby (final search 24 February, 2014). Eligible studies were English language, reporting parental views, with gestational loss >20weeks. Quality was independently assessed by three authors using a validated tool. We used meta-ethnographic techniques to identify key themes and a line of argument synthesis. We included 12 papers, representing the views of 333 parents (156 mothers, 150 fathers, and 27 couples) from six countries. The final themes were: "[Still]birth: Nature of care is paramount", "Real babies: Perfect beauties, monsters and spectres", and "Opportunity of a lifetime lost." Our line-of-argument synthesis highlights the contrast between all parents need to know their baby, with the time around birth being the only time memories can be made, and the variable ability that parents have to articulate their preferences at that time. Thus, we hypothesised that how health professionals approach contact between parents and their stillborn baby demands a degree of active management. An important limitation of this paper is all included studies originated from high income, westernised countries raising questions about the findings transferability to other cultural contexts. We do not offer new evidence to answer the question "Should parents see and hold their stillborn baby?", instead our findings advance understanding of how professionals can support parents to make appropriate decisions in a novel, highly charged and dynamic situation. Conclusions: Guidelines could be more specific in their recommendations regarding parental contact. The role of healthcare professionals in encouraging parents to see and hold their stillborn baby is paramount. Parental choice not to see their baby, apprehension, or uncertainty should be continuously revisited in the hours after birth as the opportunity for contact is fleeting and final

    Reduced conditioned fear response in mice that lack Dlx1 and show subtype-specific loss of interneurons

    Get PDF
    The inhibitory GABAergic system has been implicated in multiple neuropsychiatric diseases such as schizophrenia and autism. The Dlx homeobox transcription factor family is essential for development and function of GABAergic interneurons. Mice lacking the Dlx1 gene have postnatal subtype-specific loss of interneurons and reduced IPSCs in their cortex and hippocampus. To ascertain consequences of these changes in the GABAergic system, we performed a battery of behavioral assays on the Dlx1 mutant mice, including zero maze, open field, locomotor activity, food intake, rotarod, tail suspension, fear conditioning assays (context and trace), prepulse inhibition, and working memory related tasks (spontaneous alteration task and spatial working memory task). Dlx1 mutant mice displayed elevated activity levels in open field, locomotor activity, and tail suspension tests. These mice also showed deficits in contextual and trace fear conditioning, and possibly in prepulse inhibition. Their learning deficits were not global, as the mutant mice did not differ from the wild-type controls in tests of working memory. Our findings demonstrate a critical role for the Dlx1 gene, and likely the subclasses of interneurons that are affected by the lack of this gene, in behavioral inhibition and associative fear learning. These observations support the involvement of particular components of the GABAergic system in specific behavioral phenotypes related to complex neuropsychiatric diseases

    Investigation of type 1 diabetes and coeliac disease susceptibility loci for association with juvenile idiopathic arthritis

    Get PDF
    BACKGROUND: There is strong evidence suggesting that juvenile idiopathic arthritis (JIA) shares many susceptibility loci with other autoimmune diseases. OBJECTIVE: To investigate variants robustly associated with type 1 diabetes (T1D) or coeliac disease (CD) for association with JIA. METHODS: Sixteen single-nucleotide polymorphisms (SNPs) already identified as susceptibility loci for T1D/CD were selected for genotyping in patients with JIA (n=1054) and healthy controls (n=3129). Genotype and allele frequencies were compared using the Cochrane-Armitage trend test implemented in PLINK. RESULTS: One SNP in the LPP gene, rs1464510, showed significant association with JIA (p(trend)=0.002, OR=1.18, 95% CI 1.06 to 1.30). A second SNP, rs653178 in ATXN2, also showed nominal evidence for association with JIA (p(trend)=0.02, OR=1.13, 95% CI 1.02 to 1.25). The SNP, rs17810546, in IL12A showed subtype-specific association with enthesitis-related arthritis (ERA) subtype (p(trend)=0.005, OR=1.88, 95% CI 1.2 to 2.94). CONCLUSIONS: Evidence for a novel JIA susceptibility locus, LPP, is presented. Association at the SH2B3/ATXN2 locus, previously reported to be associated with JIA in a US series, also supports this region as contributing to JIA susceptibility. In addition, a subtype-specific association of IL12A with ERA is identified. All findings will require validation in independent JIA cohorts

    Investigation of rheumatoid arthritis susceptibility loci in juvenile idiopathic arthritis confirms high degree of overlap

    Get PDF
    &lt;p&gt;Objectives: Rheumatoid arthritis (RA) shares some similar clinical and pathological features with juvenile idiopathic arthritis (JIA); indeed, the strategy of investigating whether RA susceptibility loci also confer susceptibility to JIA has already proved highly successful in identifying novel JIA loci. A plethora of newly validated RA loci has been reported in the past year. Therefore, the aim of this study was to investigate these single nucleotide polymorphisms (SNP) to determine if they were also associated with JIA.&lt;/p&gt; &lt;p&gt;Methods: Thirty-four SNP that showed validated association with RA and had not been investigated previously in the UK JIA cohort were genotyped in JIA cases (n=1242), healthy controls (n=4281), and data were extracted for approximately 5380 UK Caucasian controls from the Wellcome Trust Case–Control Consortium 2. Genotype and allele frequencies were compared between cases with JIA and controls using PLINK. A replication cohort of 813 JIA cases and 3058 controls from the USA was available for validation of any significant findings.&lt;/p&gt; &lt;p&gt;Results: Thirteen SNP showed significant association (p&#60;0.05) with JIA and for all but one the direction of association was the same as in RA. Of the eight loci that were tested, three showed significant association in the US cohort.&lt;/p&gt; &lt;p&gt;Conclusions: A novel JIA susceptibility locus was identified, CD247, which represents another JIA susceptibility gene whose protein product is important in T-cell activation and signalling. The authors have also confirmed association of the PTPN2 and IL2RA genes with JIA, both reaching genome-wide significance in the combined analysis.&lt;/p&gt

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2–4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Social Bonding and Nurture Kinship: Compatibility between Cultural and Biological Approaches

    Full text link

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease
    corecore