108 research outputs found
Quorum-sensing activity and related virulence factor expression in clinically pathogenic isolates of Pseudomonas aeruginosa
AbstractRespiratory isolates of Pseudomonas aeruginosa were collected from 58 critically-ill patients with ventilator-associated pneumonia. Expression of elastase and pyocyanin was assessed semi-quantitatively, while quorum-sensing activity was assessed by quantifying the levels of the autoinducers N-3-oxododecanoyl-L-homoserine lactone (C12-HSL) and N-butanoyl-L-homoserine lactone (C4-HSL). Correlations were sought between quorum-sensing activity and the expression of these two virulence factors, and all results were compared to those obtained with the laboratory reference strains PA103, a strain defective in quorum-sensing, and PAO1, a functional quorum-sensing strain. More than two-thirds of clinically pathogenic isolates had increased levels of elastase and/or pyocyanin, and high quorum-sensing activity, as assessed by autoinducer levels. However, a strong correlation between quorum-sensing activity and virulence factor production was revealed only for elastase and not for pyocyanin (C12-HSL/elastase, r = 0.7, p 2 Ă 10â9; C4-HSL/elastase, r = 0.7, p 2 Ă 10â9). These data suggest that the pathogenicity of P. aeruginosa isolates from critically-ill patients with ventilator-associated pneumonia is caused, at least in part, by an increase in elastase production regulated by quorum-sensing, while increased pyocyanin production in these isolates may be regulated predominantly by mechanisms other than quorum-sensing
SOPHIE velocimetry of Kepler transit candidates XVII. The physical properties of giant exoplanets within 400 days of period
While giant extrasolar planets have been studied for more than two decades
now, there are still some open questions such as their dominant formation and
migration process, as well as their atmospheric evolution in different stellar
environments. In this paper, we study a sample of giant transiting exoplanets
detected by the Kepler telescope with orbital periods up to 400 days. We first
defined a sample of 129 giant-planet candidates that we followed up with the
SOPHIE spectrograph (OHP, France) in a 6-year radial velocity campaign. This
allow us to unveil the nature of these candidates and to measure a
false-positive rate of 54.6 +/- 6.5 % for giant-planet candidates orbiting
within 400 days of period. Based on a sample of confirmed or likely planets, we
then derive the occurrence rates of giant planets in different ranges of
orbital periods. The overall occurrence rate of giant planets within 400 days
is 4.6 +/- 0.6 %. We recover, for the first time in the Kepler data, the
different populations of giant planets reported by radial velocity surveys.
Comparing these rates with other yields, we find that the occurrence rate of
giant planets is lower only for hot jupiters but not for the longer period
planets. We also derive a first measurement on the occurrence rate of brown
dwarfs in the brown-dwarf desert with a value of 0.29 +/- 0.17 %. Finally, we
discuss the physical properties of the giant planets in our sample. We confirm
that giant planets receiving a moderate irradiation are not inflated but we
find that they are in average smaller than predicted by formation and evolution
models. In this regime of low-irradiated giant planets, we find a possible
correlation between their bulk density and the Iron abundance of the host star,
which needs more detections to be confirmed.Comment: To appear in Astronomy and Astrophysic
The SOPHIE search for northern extrasolar planets. XI. Three new companions and an orbit update: Giant planets in the habitable zone
We report the discovery of three new substellar companions to solar-type
stars, HD191806, HD214823, and HD221585, based on radial velocity measurements
obtained at the Haute-Provence Observatory. Data from the SOPHIE spectrograph
are combined with observations acquired with its predecessor, ELODIE, to detect
and characterise the orbital parameters of three new gaseous giant and brown
dwarf candidates. Additionally, we combine SOPHIE data with velocities obtained
at the Lick Observatory to improve the parameters of an already known giant
planet companion, HD16175 b. Thanks to the use of different instruments, the
data sets of all four targets span more than ten years. Zero-point offsets
between instruments are dealt with using Bayesian priors to incorporate the
information we possess on the SOPHIE/ELODIE offset based on previous studies.
The reported companions have orbital periods between three and five years and
minimum masses between 1.6 Mjup and 19 Mjup. Additionally, we find that the
star HD191806 is experiencing a secular acceleration of over 11 \ms\ per year,
potentially due to an additional stellar or substellar companion. A search for
the astrometric signature of these companions was carried out using Hipparcos
data. No orbit was detected, but a significant upper limit to the companion
mass can be set for HD221585, whose companion must be substellar.
With the exception of HD191806 b, the companions are located within the
habitable zone of their host star. Therefore, satellites orbiting these objects
could be a propitious place for life to develop.Comment: 12 pages + tables, 7 figures. Accepted for publication in Astronomy &
Astrophysic
The SOPHIE search for northern extrasolar planets VIII. A warm Neptune orbiting HD164595
High-precision radial velocity surveys explore the population of low-mass
exoplanets orbiting bright stars. This allows accurately deriving their orbital
parameters such as their occurrence rate and the statistical distribution of
their properties. Based on this, models of planetary formation and evolution
can be constrained. The SOPHIE spectrograph has been continuously improved in
past years, and thanks to an appropriate correction of systematic instrumental
drift, it is now reaching 2 m/s precision in radial velocity measurements on
all timescales. As part of a dedicated radial velocity survey devoted to search
for low-mass planets around a sample of 190 bright solar-type stars in the
northern hemisphere, we report the detection of a warm Neptune with a minimum
mass of 16.1 +- 2.7 Mearth orbiting the solar analog HD164595 in 40 +- 0.24
days . We also revised the parameters of the multiplanetary system around
HD190360. We discuss this new detection in the context of the upcoming space
mission CHEOPS, which is devoted to a transit search of bright stars harboring
known exoplanets.Comment: 11 pages, 9 figure
Direct microscopic examination of imprints in patients undergoing cardiac valve replacement
BACKGROUND: Bacteriological analysis of cardiac valves might be indicated in patients with suspected endocarditis. METHODS: We report here a prospective study on fifty-three consecutive patients whose native valves were sent to the bacteriological and pathological laboratories, to investigate the performance of direct microscopic examination of imprints and valve culture. RESULTS: On the basis of a histopathological gold standard to classify the inflammatory valve process, the sensitivity, the specificity, the positive and the negative predictive values of direct microscopic examination of imprints and valve culture were 21%, 100%, 100%, 60%, and 21%, 72%, 38%, 52% respectively. This weak threshold of the direct microscopic examination of imprints could be due to antimicrobial therapy prescribed before cardiac surgery and the fact that the patients came from a tertiary hospital receiving patients with a prolonged history of endocarditis. CONCLUSION: Clinical context and histopathology are indispensable when analyzing the imprints and valve culture
The SOPHIE search for northern extrasolar planets VIII. Follow-up of ELODIE candidates: long-period brown-dwarf companions
Long-period brown dwarf companions detected in radial velocity surveys are
important targets for direct imaging and astrometry to calibrate the
mass-luminosity relation of substellar objects. Through a 20-year radial
velocity monitoring of solar-type stars that began with ELODIE and was extended
with SOPHIE spectrographs, giant exoplanets and brown dwarfs with orbital
periods longer than ten years are discovered. We report the detection of five
new potential brown dwarfs with minimum masses between 32 and 83 Jupiter mass
orbiting solar-type stars with periods longer than ten years. An upper mass
limit of these companions is provided using astrometric Hipparcos data,
high-angular resolution imaging made with PUEO, and a deep analysis of the
cross-correlation function of the main stellar spectra to search for blend
effects or faint secondary components. These objects double the number of known
brown dwarf companions with orbital periods longer than ten years and reinforce
the conclusion that the occurrence of such objects increases with orbital
separation. With a projected separation larger than 100 mas, all these brown
dwarf candidates are appropriate targets for high-contrast and high angular
resolution imaging.Comment: 17 pages, 9 figures, accepted in A&
One of the closest exoplanet pairs to the 3:2 Mean Motion Resonance: K2-19b \& c
The K2 mission has recently begun to discover new and diverse planetary
systems. In December 2014 Campaign 1 data from the mission was released,
providing high-precision photometry for ~22000 objects over an 80 day timespan.
We searched these data with the aim of detecting further important new objects.
Our search through two separate pipelines led to the independent discovery of
K2-19b \& c, a two-planet system of Neptune sized objects (4.2 and 7.2
), orbiting a K dwarf extremely close to the 3:2 mean motion
resonance. The two planets each show transits, sometimes simultaneously due to
their proximity to resonance and alignment of conjunctions. We obtain further
ground based photometry of the larger planet with the NITES telescope,
demonstrating the presence of large transit timing variations (TTVs), and use
the observed TTVs to place mass constraints on the transiting objects under the
hypothesis that the objects are near but not in resonance. We then
statistically validate the planets through the \texttt{PASTIS} tool,
independently of the TTV analysis.Comment: 18 pages, 10 figures, accepted to A&A, updated to match published
versio
The physiological variability of channel density in hippocampal CA1 pyramidal cells and interneurons explored using a unified data-driven modeling workflow
Every neuron is part of a network, exerting its function by transforming multiple spatiotemporal synaptic input patterns into a single spiking output. This function is specified by the particular shape and passive electrical properties of the neuronal membrane, and the composition and spatial distribution of ion channels across its processes. For a variety of physiological or pathological reasons, the intrinsic input/output function may change during a neuronâs lifetime. This process results in high variability in the peak specific conductance of ion channels in individual neurons. The mechanisms responsible for this variability are not well understood, although there are clear indications from experiment and modeling that degeneracy and correlation among multiple channels may be involved. Here, we studied this issue in biophysical models of hippocampal CA1 pyramidal neurons and interneurons. Using a unified data-driven simulation workflow and starting from a set of experimental recordings and morphological reconstructions obtained from rats, we built and analyzed several ensembles of morphologically and biophysically accurate single cell models with intrinsic electrophysiological properties consistent with experimental findings. The results suggest that the set of conductances expressed in any given hippocampal neuron may be considered as belonging to two groups: one subset is responsible for the major characteristics of the firing behavior in each population and the other responsible for a robust degeneracy. Analysis of the model neurons suggests several experimentally testable predictions related to the combination and relative proportion of the different conductances that should be expressed on the membrane of different types of neurons for them to fulfill their role in the hippocampus circuitry
Relative contribution of three main virulence factors in Pseudomonas aeruginosa pneumonia:
Objective: The pathogenesis and the outcome of Pseudomonas aeruginosa ventilator-acquired pneumonia depend on the virulence factors displayed by the bacteria as well as the host response. Thus, quorum sensing, lipopolysaccharide, and type 3 secretion system have each individually been shown to be important virulence systems in laboratory reference strains. However, the relative contribution of these three factors to the in vivo pathogenicity of clinically relevant strains has never been studied. We analyzed the virulence of 56 nonclonal Pseudomonas aeruginosa strains isolated from critically ill patients with ventilator-acquired pneumonia. To avoid the variation of human immune response, we used a murine model of pneumonia. The aim was to determine which virulence factor was the most important.Setting: Research laboratory of a university. Subjects: Male adult BALB/c mice. Interventions: In vitro, the phenotype of each strain was established as to the expression of quorum sensing-regulated factors (elastase and pyocyanin), type 3 secretion system exotoxin secretion (Exotoxin U, S and/or T, or ânonsecretingâ), and lipopolysaccharide O-antigen serotype. Strain pathogenicity was evaluated in vivo in a mouse model of acute pneumonia through lung injury assessment by measuring alveolarâcapillary barrier permeability to proteins, lung wet/dry weight ratio, and bacterial dissemination. Associations were then sought between virulence system phenotypes and levels of lung injury. Measurements and Main Results: In univariate analysis, elastase production, O11 serotype, and type 3 secretion system exotoxin secretion were associated with increased lung injury and exotoxin U was linked to an increase risk of bacteremia. In multivariate analysis, we observed that type 3 secretion system exotoxin secretion and to a lesser degree elastase production were associated with increased lung injury. Conclusion: In a murine model of pneumonia, our data suggest that type 3 secretion system and elastase are the most important virulence factors in clinically relevant P. aeruginosa strains
Photodynamical mass determination of the multiplanetary system K2-19
K2-19 is the second multiplanetary system discovered with K2 observations. The system is composed of two Neptune size planets close to the 3:2 mean-motion resonance. To better characterize the system we obtained two additional transit observations of K2-19b and five additional radial velocity observations. These were combined with K2 data and fitted simultaneously with the system dynamics (photodynamical model) which increases the precision of the transit time measurements. The higher transit time precision allows us to detect the chopping signal of the dynamic interaction of the planets that in turn permits to uniquely characterize the system. Although the reflex motion of the star was not detected, dynamic modelling of the system allowed us to derive planetary masses of Mb = 44 ± 12â Mâ and Mc = 15.9 ± 7.0â Mâ for the inner and the outer planets, respectively, leading to densities close to Uranus. We also show that our method allows the derivation of mass ratios using only the 80 d of observations during the first campaign of K2
- âŠ