130 research outputs found

    Rôle modulateur de la glutathion transférase Pi dans la prolifération et la mort des cellules normales et transformées

    Get PDF
    L'expression élevée de la GSTP1 est fréquemment observée dans les cancers et est positivement corrélée à la résistance aux chimiothérapies. Cette enzyme de détoxication de phase II peut aussi réguler l'activité de protéines comme JNK et TRAF2 et, par conséquent, peut moduler les voies de prolifération et de mort cellulaire. Ce projet a donc consisté à étudier le rôle de la GSTP1 dans la prolifération des hépatocytes normaux ou transformés. L'étude de la régénération hépatique chez des souris Gstp1/2 / a permis de démontrer le rôle des protéines GSTP1 et GSTP2 dans le contrôle de la progression des hépatocytes normaux dans le cycle cellulaire. Après hépatectomie partielle chez les souris Gstp1/2 / , une diminution importante du nombre d'hépatocytes dans les phases S, G2 et M est observée comparativement à des foies de souris contrôle. Cette réduction est associée à des retards d'expression de protéines impliquées dans l'initiation de la prolifération, le contrôle du point de restriction dépendant des mitogènes et dans la transition G1/S. Ces modifications sont associées à une réduction de l'expression de TRAF2 et de l'activation de JNK et ERK, alors que les taux de p21 et de p53 sont élevés. Parallèlement, un décalage dans l'expression d'enzymes qui régulent l'homéostasie redox et participent à l'activation des MAPK est observé. L'utilisation de cellules cancéreuses de différentes origines dont le foie, a également permis de corréler l'absence de GSTP1 à une diminution de prolifération cellulaire sans altération de la suivie cellulaire. Cependant dans ces conditions, nous observons une augmentation de l'expression de TRAF2, pJNK, pATF2, ATF3 associée à une induction de p21. Nous avons également montré que les effets de la GSTP1 sur la prolifération cellulaire sont régulés par l'activation de JNK. L'évidence du lien entre l'expression de la GSTP1 et la prolifération hépatocytaire nous a conduit à analyser l'expression d'enzymes de détoxication dans des carcinomes hépatocellulaires (CHC) et nous avons constaté une induction d'expression de GSTP1 dans le tissu péritumoral des CHC par rapport au foie normal.Increased GSTP1 expression is frequently observed in cancers and is positively correlated with chemotherapy resistance. This phase II detoxifying enzyme can also regulate JNK and TRAF2 activities and, consequently, can modulate proliferation and cell death pathways. This project aimed at studying the role of GSTP1 during proliferation in normal and transformed hepatocytes. Liver regeneration study in Gstp1/2 / mice showed the involvement of GSTP1 and GSTP2 proteins in the cell cycle progression control of normal hepatocytes. After partial hepatectomy in Gstp1/2 / mice, the number of cells in S, G2 and M phases was decreased compared to livers of wildtype mice. This reduction is associated with the delay in the expression of proteins involved in proliferation initiation, mitogen restriction point control and G1/S transition. These modifications are associated with the decrease in TRAF2 expression and the activation of JNK and ERK, whereas p21 and p53 levels are high. Furthermore, expression of enzymes involved in redox homeostasis and MAPK activation is delayed. Study of cells derived from various cancers, including HCC, highlighted a correlation between low expression of GSTP1 and decrease in cell proliferation without cell survival alteration. However in these conditions, we observed the increase in TRAF2, pJNK, pATF2 and ATF3 expression together with the induction of p21. We also showed that GSTP1 effects are regulated by JNK activation. These results showed a link between GSTP1 expression and hepatocyte proliferation and led us to investigate the GSTP1 expression in HCC. We noticed an induction of GSTP1 expression in peritumoral tissue compared to normal liver.RENNES1-Bibl. électronique (352382106) / SudocSudocFranceF

    Hepatic differentiation of human pluripotent stem cells on human liver progenitor HepaRG-derived acellular matrix

    Get PDF
    Human hepatocytes are extensively needed in drug discovery and development. Stem cell-derived hepatocytes are expected to be an improved and continuous model of human liver to study drug candidates. Generation of endoderm-derived hepatocytes from human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, is a complex, challenging process requiring specific signals from soluble factors and insoluble matrices at each developmental stage. In this study, we used human liver progenitor HepaRG-derived acellular matrix (ACM) as a hepatic progenitor-specific matrix to induce hepatic commitment of hPSC-derived definitive endoderm (DE) cells. The DE cells showed much better attachment to the HepaRG ACM than other matrices tested and then differentiated towards hepatic cells, which expressed hepatocyte-specific makers. We demonstrate that Matrigel overlay induced hepatocyte phenotype and inhibited biliary epithelial differentiation in two hPSC lines studied. In conclusion, our study demonstrates that the HepaRG ACM, a hepatic progenitor-specific matrix, plays an important role in the hepatic differentiation of hPSCs. (C) 2016 Elsevier Inc. All rights reserved.Peer reviewe

    Predictive toxicology using systemic biology and liver microfluidic "on chip" approaches: Application to acetaminophen injury

    Get PDF
    International audienceWe have analyzed transcriptomic, proteomic and metabolomic profiles of hepatoma cells cultivated inside a microfluidic biochip with or without acetaminophen (APAP). Without APAP, the results show an adaptive cellular response to the microfluidic environment, leading to the induction of anti-oxidative stress and cytoprotective pathways. In presence of APAP, calcium homeostasis perturbation, lipid peroxidation and cell death are observed. These effects can be attributed to APAP metabolism into its highly reactive metabolite. N-acetyl-p-benzoquinone imine (NAPQI). That toxicity pathway was confirmed by the detection of GSH-APAP, the large production of 2-hydroxybutyrate and 3-hydroxybutyrate, and methionine, cystine, and histidine consumption in the treated biochips. Those metabolites have been reported as specific biomarkers of hepatotoxicity and glutathione depletion in the literature. In addition, the integration of the metabolomic, transcriptomic and proteomic collected profiles allowed a more complete reconstruction of the APAP injury pathways. To our knowledge, this work is the first example of a global integration of microfluidic biochip data in toxicity assessment. Our results demonstrate the potential of that new approach to predictive toxicology

    Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture

    Get PDF
    Over the recent years, various materials have been introduced as potential 3D cell culture scaffolds. These include protein extracts, peptide amphiphiles, and synthetic polymers. Hydrogel scaffolds without human or animal borne components or added bioactive components are preferred from the immunological point of view. Here we demonstrate that native nanofibrillar cellulose (NFC) hydrogels derived from the abundant plant sources provide the desired functionalities. We show 1) rheological properties that allow formation of a 3D scaffold in-situ after facile injection, 2) cellular biocompatibility without added growth factors, 3) cellular polarization, and 4) differentiation of human hepatic cell lines HepaRG and HepG2. At high shear stress, the aqueous NFC has small viscosity that supports injectability, whereas at low shear stress conditions the material is converted to an elastic gel. Due to the inherent biocompatibility without any additives, we conclude that NFC generates a feasible and sustained microenvironment for 3D cell culture for potential applications, such as drug and chemical testing, tissue engineering, and cell therapy.Peer reviewe

    Transcriptional and Epigenetic Consequences of DMSO Treatment on HepaRG Cells

    Get PDF
    Dimethyl sulfoxide (DMSO) is used to sustain or favor hepatocyte differentiation in vitro. Thus, DMSO is used in the differentiation protocol of the HepaRG cells that present the closest drug-metabolizing enzyme activities to primary human hepatocytes in culture. The aim of our study is to clarify its influence on liver-specific gene expression. For that purpose, we performed a large-scale analysis (gene expression and histone modification) to determine the global role of DMSO exposure during the differentiation process of the HepaRG cells. The addition of DMSO drives the upregulation of genes mainly regulated by PXR and PPARα whereas genes not affected by this addition are regulated by HNF1α, HNF4α, and PPARα. DMSO-differentiated-HepaRG cells show a differential expression for genes regulated by histone acetylation, while differentiated-HepaRG cells without DMSO show gene signatures associated with histone deacetylases. In addition, we observed an interplay between cytoskeleton organization and EMC remodeling with hepatocyte maturation

    Regulation of the G1/S Transition in Hepatocytes: Involvement of the Cyclin-Dependent Kinase Cdk1 in the DNA Replication

    Get PDF
    A singular feature of adult differentiated hepatocytes is their capacity to proliferate allowing liver regeneration. This review emphasizes the literature published over the last 20 years that established the most important pathways regulating the hepatocyte cell cycle. Our article also aimed at illustrating that many discoveries in this field benefited from the combined use of in vivo models of liver regeneration and in vitro models of primary cultures of human and rodent hepatocytes. Using these models, our laboratory has contributed to decipher the different steps of the progression into the G1 phase and the commitment to S phase of proliferating hepatocytes. We identified the mitogen dependent restriction point located at the two-thirds of the G1 phase and the concomitant expression and activation of both Cdk1 and Cdk2 at the G1/S transition. Furthermore, we demonstrated that these two Cdks contribute to the DNA replication. Finally, we provided strong evidences that Cdk1 expression and activation is correlated to extracellular matrix degradation upon stimulation by the pro-inflammatory cytokine TNFα leading to the identification of a new signaling pathway regulating Cdk1 expression at the G1/S transition. It also further confirms the well-orchestrated regulation of liver regeneration via multiple extracellular signals and pathways

    Culture Conditions Promoting Hepatocyte Proliferation and Cell Cycle Synchronization

    No full text
    International audienceThe liver overcomes damages induced by harmful substances or viral infections and allows the use of extended resection in human therapy through its remarkable ability to regenerate. The regeneration process relies on the massive proliferation of differentiated hepatocytes that exit quiescence and undergo a limited number of cell cycles to restore the hepatic mass. Many discoveries on the regulation of hepatocyte proliferation have benefited from the use of in vitro models of cultures of primary hepatocytes as well as hepatoma cells as opposed to data obtained from in vivo models of liver regeneration, such as following partial hepatectomy in rodents. In this chapter, the most pertinent in vitro models used to promote the proliferation of hepatocytes and technical procedures to synchronize their progression throughout the cell cycle are presented with the goal to investigate the regulation of the hepatocyte cell cycle and the molecular pathways regulating liver regeneratio

    Regulation of the G1/S Transition in Hepatocytes: Involvement of the Cyclin-Dependent Kinase Cdk1 in the DNA Replication

    No full text
    A singular feature of adult differentiated hepatocytes is their capacity to proliferate allowing liver regeneration. This review emphasizes the literature published over the last 20 years that established the most important pathways regulating the hepatocyte cell cycle. Our article also aimed at illustrating that many discoveries in this field benefited from the combined use of in vivo models of liver regeneration and in vitro models of primary cultures of human and rodent hepatocytes. Using these models, our laboratory has contributed to decipher the different steps of the progression into the G1 phase and the commitment to S phase of proliferating hepatocytes. We identified the mitogen dependent restriction point located at the two-thirds of the G1 phase and the concomitant expression and activation of both Cdk1 and Cdk2 at the G1/S transition. Furthermore, we demonstrated that these two Cdks contribute to the DNA replication. Finally, we provided strong evidences that Cdk1 expression and activation is correlated to extracellular matrix degradation upon stimulation by the pro-inflammatory cytokine TNFα leading to the identification of a new signaling pathway regulating Cdk1 expression at the G1/S transition. It also further confirms the well-orchestrated regulation of liver regeneration via multiple extracellular signals and pathways
    corecore