134 research outputs found

    NICER X-ray Observations of Eta Carinae During its Most Recent Periastron Passage

    Get PDF
    We report high-precision X-ray monitoring observations in the 0.4-10 keV band of the luminous, long-period colliding-wind binary Eta Carinae up to and through its most recent X-ray minimum/periastron passage in February 2020. Eta Carinae reached its observed maximum X-ray flux on 7 January 2020, at a flux level of 3.30×10103.30 \times 10^{-10} ergs s1^{-1} cm2^{-2}, followed by a rapid plunge to its observed minimum flux, 0.03×10100.03 \times 10^{-10} ergs s1^{-1} cm2^{-2} near 17 February 2020. The NICER observations show an X-ray recovery from minimum of only \sim16 days, the shortest X-ray minimum observed so far. We provide new constraints of the "deep" and "shallow" minimum intervals. Variations in the characteristic X-ray temperature of the hottest observed X-ray emission indicate that the apex of the wind-wind "bow shock" enters the companion's wind acceleration zone about 81 days before the start of the X-ray minimum. There is a step-like increase in column density just before the X-ray minimum, probably associated with the presence of dense clumps near the shock apex. During recovery and after, the column density shows a smooth decline, which agrees with previous NHN_{H} measurements made by SWIFT at the same orbital phase, indicating that changes in mass-loss rate are only a few percent over the two cycles. Finally, we use the variations in the X-ray flux of the outer ejecta seen by NICER to derive a kinetic X-ray luminosity of the ejecta of 1041\sim 10^{41} ergs s1^{-1} near the time of the "Great Eruption'

    Eta Carinae: an evolving view of the central binary, its interacting winds and its foreground ejecta

    Get PDF
    FUV spectra of Eta Car, recorded across two decades with HST/STIS, document multiple changes in resonant lines caused by dissipating extinction in our line of sight. The FUV flux has increased nearly ten-fold which has led to increased ionization of the multiple shells within the Homunculus and photo-destruction of molecular hydrogen. Comparison of observed resonant line profiles with CMFGEN model profiles allows separation of wind-wind collision and shell absorptions from the primary wind, P Cygni profiles.The dissipating occulter preferentially obscured the central binary and interacting winds relative to the very extended primary wind. We are now able to monitor changes in the colliding winds with orbital phase. High velocity transient absorptions occurred across the most recent periastron passage, indicating acceleration of the primary wind by the secondary wind which leads to a downstream, high velocity bowshock that is newly generated every orbital period. There is no evidence of changes in the properties of the binary winds.Comment: 36 pages, 22 figures, accepted Astrophysical Journa

    Stability of Lactobacillus rhamnosus GG in prebiotic edible films

    Get PDF
    The concept of prebiotic edible films as effective vehicles for encapsulating probiotic living cells is presented. Four soluble fibres (inulin, polydextrose, glucose-oligosaccharides and wheat dextrin) were selected as prebiotic co-components of gelatine based matrices plasticised with glycerol and used for the immobilisation of Lactobacillus rhamnosus GG. The addition of prebiotics was associated with a more compact and uniform film structure, with no detectable interspaces or micropores; probiotic inclusion did not significantly change the structure of the films. Glucose-oligosaccharides and polydextrose significantly enhanced L. rhamnosus GG viability during air drying (by 300% and 75%, respectively), whilst a 33% and 80% reduction in viable counts was observed for inulin and wheat dextrin. Contrarily, inulin was the most effective at controlling the sub-lethal effects on L. rhamnosus GG during storage. However, in all cases the supplementation of edible films with prebiotics ameliorated the storage stability of L. rhamnosus GG

    HACE1 deficiency causes an autosomal recessive neurodevelopmental syndrome

    Get PDF
    Background: The genetic etiology of neurodevelopmental defects is extremely diverse, and the lack of distinctive phenotypic features means that genetic criteria are often required for accurate diagnostic classification. We aimed to identify the causative genetic lesions in two families in which eight affected individuals displayed variable learning disability, spasticity and abnormal gait. Methods: Autosomal recessive inheritance was suggested by consanguinity in one family and by sibling recurrences with normal parents in the second. Autozygosity mapping and exome sequencing, respectively, were used to identify the causative gene. Results: In both families, biallelic loss-of-function mutations in HACE1 were identified. HACE1 is an E3 ubiquitin ligase that regulates the activity of cellular GTPases, including Rac1 and members of the Rab family. In the consanguineous family, a homozygous mutation p.R219* predicted a truncated protein entirely lacking its catalytic domain. In the other family, compound heterozygosity for nonsense mutation p.R748* and a 20-nt insertion interrupting the catalytic HECT domain was present; Western analysis of patient cells revealed an absence of detectable HACE1 protein. Conclusion: HACE1 mutations underlie a new autosomal recessive neurodevelopmental disorder. Previous studies have implicated HACE1 as a tumour suppressor gene; however, since cancer predisposition was not observed either in homozygous or heterozygous mutation carriers, this concept may require re-evaluation

    Impact of milk protein type on the viability and storage stability of microencapsulated Lactobacillus acidophilus using spray drying

    Get PDF
    Three different milk proteins — skim milk powder (SMP), sodium caseinate (SC) and whey protein concentrate (WPC) — were tested for their ability to stabilize microencapsulated L. acidophilus produced using spray drying. Maltodextrin (MD) was used as the primary wall material in all samples, milk protein as the secondary wall material (7:3 MD/milk protein ratio) and the simple sugars, d-glucose and trehalose were used as tertiary wall materials (8:2:2 MD/protein/sugar ratio) combinations of all wall materials were tested for their ability to enhance the microbial and techno-functional stability of microencapsulated powders. Of the optional secondary wall materials, WPC improved L. acidophilus viability, up to 70 % during drying; SMP enhanced stability by up to 59 % and SC up to 6 %. Lactose and whey protein content enhanced thermoprotection; this is possibly due to their ability to depress the glass transition and melting temperatures and to release antioxidants. The resultant L. acidophilus powders were stored for 90 days at 4 °C, 25 °C and 35 °C and the loss of viability calculated. The highest survival rates were obtained at 4 °C, inactivation rates for storage were dependent on the carrier wall material and the SMP/d-glucose powders had the lowest inactivation rates (0.013 day−1) whilst the highest was observed for the control containing only MD (0.041 day−1) and the SC-based system (0.030 day−1). Further increase in storage temperature (25 °C and 35 °C) was accompanied by increase of the inactivation rates of L. acidophilus that followed Arrhenius kinetics. In general, SMP-based formulations exhibited the highest temperature dependency whilst WPC the lowest. d-Glucose addition improved the storage stability of the probiotic powders although it was accompanied by an increase of the residual moisture, water activity and hygroscopicity, and a reduction of the glass transition temperature in the tested systems

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts

    Pan-cancer Alterations of the MYC Oncogene and Its Proximal Network across the Cancer Genome Atlas

    Get PDF
    Although theMYConcogene has been implicated incancer, a systematic assessment of alterations ofMYC, related transcription factors, and co-regulatoryproteins, forming the proximal MYC network (PMN),across human cancers is lacking. Using computa-tional approaches, we define genomic and proteo-mic features associated with MYC and the PMNacross the 33 cancers of The Cancer Genome Atlas.Pan-cancer, 28% of all samples had at least one ofthe MYC paralogs amplified. In contrast, the MYCantagonists MGA and MNT were the most frequentlymutated or deleted members, proposing a roleas tumor suppressors.MYCalterations were mutu-ally exclusive withPIK3CA,PTEN,APC,orBRAFalterations, suggesting that MYC is a distinct onco-genic driver. Expression analysis revealed MYC-associated pathways in tumor subtypes, such asimmune response and growth factor signaling; chro-matin, translation, and DNA replication/repair wereconserved pan-cancer. This analysis reveals insightsinto MYC biology and is a reference for biomarkersand therapeutics for cancers with alterations ofMYC or the PMN

    Spatial Organization and Molecular Correlation of Tumor-Infiltrating Lymphocytes Using Deep Learning on Pathology Images

    Get PDF
    Beyond sample curation and basic pathologic characterization, the digitized H&E-stained images of TCGA samples remain underutilized. To highlight this resource, we present mappings of tumorinfiltrating lymphocytes (TILs) based on H&E images from 13 TCGA tumor types. These TIL maps are derived through computational staining using a convolutional neural network trained to classify patches of images. Affinity propagation revealed local spatial structure in TIL patterns and correlation with overall survival. TIL map structural patterns were grouped using standard histopathological parameters. These patterns are enriched in particular T cell subpopulations derived from molecular measures. TIL densities and spatial structure were differentially enriched among tumor types, immune subtypes, and tumor molecular subtypes, implying that spatial infiltrate state could reflect particular tumor cell aberration states. Obtaining spatial lymphocytic patterns linked to the rich genomic characterization of TCGA samples demonstrates one use for the TCGA image archives with insights into the tumor-immune microenvironment
    corecore