1,318 research outputs found

    Magnificent Constructions: The Role of Environment on the Stellar Mass Growth of Massive Galaxies

    Get PDF
    To understand how the present day universe came to be, we must understand how the massive structures in which we live formed and evolved over the preceding billions of years. Constraining how galaxies grow are the most massive galaxies, called brightest cluster galaxies (BCGs). These luminous and diffuse elliptical galaxies inhabit relaxed positions within their host cluster\u27s gravitational potentials and provide a look at the high mass extreme of galaxy evolution. The relaxed structure, old stellar populations, and central location within the cluster indicate a high redshift formation scenario, however, star-forming BCGs have been observed at much more recent epochs. Addressing this evolutionary complexity, my dissertation consists of four studies to investigate the growth rates of BCGs over several epochs, and how they relate to the growth of the general galaxy population. In my first paper, I present a multiwavelength (far-ultraviolet to far-infrared) study of BCG star formation rates and stellar masses from 0.2 \u3c z \u3c 0.7 (Cooke et al. 2016), selected from the CLASH and SGAS surveys. I find that in-situ star formation in my sample is consistent with overall quiescence, and star-forming BCGs remain very rare. In my second paper (Cooke et al. 2018), my sample\u27s redshift range is expanded to z ~ 1 with the addition of massive BCGs (M_Stellar \u3e 10^11 M_Solar) from galaxy clusters available in the COSMOS X-ray Group Catalog. I find that star formation is roughly constant in our sample of high mass BCGs from 0.3 \u3c z \u3c 1.0, with a possible decrease at lower redshifts. We also find a growth rate of ~1% yr^-1, inconsistent with portions of the literature that find an order of magnitude higher growth from infrared selected samples. My third paper (Cooke et al. 2019) identifies BCG progenitors out to z ~ 3 using cumulative comoving number density tracks from the Illustris Project. We identify three phases of growth, limiting the star-formation dominated epoch to z \u3e 2.25. Finally, my fourth paper (Cooke et al. in preparation) places the preceding results in context by measuring the correlation between star formation rate and stellar mass for all galaxies above the COSMOS mass completeness limit from 0 \u3c z \u3c 3.5

    Upper boundary condition for asteroseismological modelling of solar-type stars

    Get PDF
    ix, 67 leaves : col. ill. ; 29 cm.Includes abstract.Includes bibliographical references (leaves 65-67).We present a grid of line blanketed spherical LTE model atmospheres and high resolution extinction spectra for use in interpolating an accurate outer boundary condition for asteroseismology calculations at arbitrary T[subscript eff] and log g. We investigate the accuracy of four interpolation methods by interpolating within our grid to solar values of T[subscript eff] and log g and comparing the results to an exact solar model. We test the impact of the resolution of our grid on the accuracy of the interpolations by performing linear interpolations within our grid at different sampling rates in T[subscript eff] and log g. We test whether interpolating k[subscript R] within our grid and computing T[subcript R] or calculating T[subscript R] for each model and interpolating it directly produces more accurate results. We also present a NLTE exact solar model and compare the boundary condition resulting from it to those of the LTE exact model

    A Thirty Kiloparsec Chain of "Beads on a String" Star Formation Between Two Merging Early Type Galaxies in the Core of a Strong-Lensing Galaxy Cluster

    Full text link
    New Hubble Space Telescope ultraviolet and optical imaging of the strong-lensing galaxy cluster SDSS J1531+3414 (z=0.335) reveals two centrally dominant elliptical galaxies participating in an ongoing major merger. The interaction is at least somewhat rich in cool gas, as the merger is associated with a complex network of nineteen massive superclusters of young stars (or small tidal dwarf galaxies) separated by ~1 kpc in projection from one another, combining to an estimated total star formation rate of ~5 solar masses per year. The resolved young stellar superclusters are threaded by narrow H-alpha, [O II], and blue excess filaments arranged in a network spanning ~27 kpc across the two merging galaxies. This morphology is strongly reminiscent of the well-known "beads on a string" mode of star formation observed on kpc-scales in the arms of spiral galaxies, resonance rings, and in tidal tails between interacting galaxies. Nevertheless, the arrangement of this star formation relative to the nuclei of the two galaxies is difficult to interpret in a dynamical sense, as no known "beads on a string" systems associated with kpc-scale tidal interactions exhibit such lopsided morphology relative to the merger participants. In this Letter we present the images and follow-up spectroscopy, and discuss possible physical interpretations for the unique arrangement of the young stellar clusters. While we suggest that this morphology is likely to be dynamically short-lived, a more quantitative understanding awaits necessary multiwavelength follow-up, including optical integral field spectroscopy, ALMA sub-mm interferometry, and Chandra X-ray imaging.Comment: 7 pages, 4 figures, accepted for publication in ApJ Letters. High resolution images of the cluster can be found at http://hubblesite.org/news/2014/2

    High-selectivity palladium catalysts for the partial hydrogenation of alkynes by gas-phase cluster deposition onto oxide powders

    Get PDF
    The selective hydrogenation of alkynes is an important reaction in the synthesis of fine and bulk chemicals. We show that the synthesis of metal nanoparticles in the gas phase, followed by deposition onto conventional support powders results in materials that perform as well as those made by typical methods for making catalysts (impregnation, deposition). The nature of the active sites in these catalysts is explored

    Designing the climate observing system of the future

    Get PDF
    © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth's Future 6 (2018): 80–102, doi:10.1002/2017EF000627.Climate observations are needed to address a large range of important societal issues including sea level rise, droughts, floods, extreme heat events, food security, and freshwater availability in the coming decades. Past, targeted investments in specific climate questions have resulted in tremendous improvements in issues important to human health, security, and infrastructure. However, the current climate observing system was not planned in a comprehensive, focused manner required to adequately address the full range of climate needs. A potential approach to planning the observing system of the future is presented in this article. First, this article proposes that priority be given to the most critical needs as identified within the World Climate Research Program as Grand Challenges. These currently include seven important topics: melting ice and global consequences; clouds, circulation and climate sensitivity; carbon feedbacks in the climate system; understanding and predicting weather and climate extremes; water for the food baskets of the world; regional sea-level change and coastal impacts; and near-term climate prediction. For each Grand Challenge, observations are needed for long-term monitoring, process studies and forecasting capabilities. Second, objective evaluations of proposed observing systems, including satellites, ground-based and in situ observations as well as potentially new, unidentified observational approaches, can quantify the ability to address these climate priorities. And third, investments in effective climate observations will be economically important as they will offer a magnified return on investment that justifies a far greater development of observations to serve society's needs

    Investigating the Effect of Galaxy Interactions on Star Formation at 0.5<z<3.0

    Full text link
    Observations and simulations of interacting galaxies and mergers in the local universe have shown that interactions can significantly enhance the star formation rates (SFR) and fueling of Active Galactic Nuclei (AGN). However, at higher redshift, some simulations suggest that the level of star formation enhancement induced by interactions is lower due to the higher gas fractions and already increased SFRs in these galaxies. To test this, we measure the SFR enhancement in a total of 2351 (1327) massive (M∗>1010M⊙M_*>10^{10}M_\odot) major (1<M1/M2<41<M_1/M_2<4) spectroscopic galaxy pairs at 0.5<z<3.0 with ΔV<5000\Delta V <5000 km s−1^{-1} (1000 km s−1^{-1}) and projected separation <150 kpc selected from the extensive spectroscopic coverage in the COSMOS and CANDELS fields. We find that the highest level of SFR enhancement is a factor of 1.23−0.09+0.08^{+0.08}_{-0.09} in the closest projected separation bin (<25 kpc) relative to a stellar mass-, redshift-, and environment-matched control sample of isolated galaxies. We find that the level of SFR enhancement is a factor of ∼1.5\sim1.5 higher at 0.5<z<1 than at 1<z<3 in the closest projected separation bin. Among a sample of visually identified mergers, we find an enhancement of a factor of 1.86−0.18+0.29^{+0.29}_{-0.18} for coalesced systems. For this visually identified sample, we see a clear trend of increased SFR enhancement with decreasing projected separation (2.40−0.37+0.62^{+0.62}_{-0.37} vs.\ 1.58−0.20+0.29^{+0.29}_{-0.20} for 0.5<z<1.6 and 1.6<z<3.0, respectively). The SFR enhancement seen in our interactions and mergers are all lower than the level seen in local samples at the same separation, suggesting that the level of interaction-induced star formation evolves significantly over this time period.Comment: 23 pages, 13 figures, Accepted for publication in Ap

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    Genome Scan of M. tuberculosis Infection and Disease in Ugandans

    Get PDF
    Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), is an enduring public health problem globally, particularly in sub-Saharan Africa. Several studies have suggested a role for host genetic susceptibility in increased risk for TB but results across studies have been equivocal. As part of a household contact study of Mtb infection and disease in Kampala, Uganda, we have taken a unique approach to the study of genetic susceptibility to TB, by studying three phenotypes. First, we analyzed culture confirmed TB disease compared to latent Mtb infection (LTBI) or lack of Mtb infection. Second, we analyzed resistance to Mtb infection in the face of continuous exposure, defined by a persistently negative tuberculin skin test (PTST-); this outcome was contrasted to LTBI. Third, we analyzed an intermediate phenotype, tumor necrosis factor-alpha (TNFα) expression in response to soluble Mtb ligands enriched with molecules secreted from Mtb (culture filtrate). We conducted a full microsatellite genome scan, using genotypes generated by the Center for Medical Genetics at Marshfield. Multipoint model-free linkage analysis was conducted using an extension of the Haseman-Elston regression model that includes half sibling pairs, and HIV status was included as a covariate in the model. The analysis included 803 individuals from 193 pedigrees, comprising 258 full sibling pairs and 175 half sibling pairs. Suggestive linkage (p<10−3) was observed on chromosomes 2q21-2q24 and 5p13-5q22 for PTST-, and on chromosome 7p22-7p21 for TB; these findings for PTST- are novel and the chromosome 7 region contains the IL6 gene. In addition, we replicated recent linkage findings on chromosome 20q13 for TB (p = 0.002). We also observed linkage at the nominal α = 0.05 threshold to a number of promising candidate genes, SLC11A1 (PTST- p = 0.02), IL-1 complex (TB p = 0.01), IL12BR2 (TNFα p = 0.006), IL12A (TB p = 0.02) and IFNGR2 (TNFα p = 0.002). These results confirm not only that genetic factors influence the interaction between humans and Mtb but more importantly that they differ according to the outcome of that interaction: exposure but no infection, infection without progression to disease, or progression of infection to disease. Many of the genetic factors for each of these stages are part of the innate immune system

    The cluster beam route to model catalysts and beyond

    Get PDF
    The generation of beams of atomic clusters in the gas phase and their subsequent deposition (in vacuum) onto suitable catalyst supports, possibly after an intermediate mass filtering step, represents a new and attractive approach for the preparation of model catalyst particles. Compared with the colloidal route to the production of pre-formed catalytic nanoparticles, the nanocluster beam approach offers several advantages: the clusters produced in the beam have no ligands, their size can be selected to arbitrarily high precision by the mass filter, and metal particles containing challenging combinations of metals can be readily produced. However, until now the cluster approach has been held back by the extremely low rates of metal particle production, of the order of 1 microgram per hour. This is more than sufficient for surface science studies but several orders of magnitude below what is desirable even for research-level reaction studies under realistic conditions. In this paper we describe solutions to this scaling problem, specifically, the development of two new generations of cluster beam sources, which suggest that cluster beam yields of grams per hour may ultimately be feasible. Moreover, we illustrate the effectiveness of model catalysts prepared by cluster beam deposition onto agitated powders in the selective hydrogenation of 1-pentyne (a gas phase reaction) and 3-hexyn-1-ol (a liquid phase reaction). Our results for elemental Pd and binary PdSn and PdTi cluster catalysts demonstrate favourable combinations of yield and selectivity compared with reference materials synthesised by conventional methods
    • …
    corecore