101 research outputs found

    Observations of MeV electrons in Jupiter's innermost radiation belts and polar regions by the Juno radiation monitoring investigation: Perijoves 1 and 3

    Get PDF
    Juno's "Perijove 1" (27 August 2016) and "Perijove 3" (11 December 2016) flybys through the innermost region of Jupiter's magnetosphere (radial distances J at closest approach) provided the first in situ look at this region's radiation environment. Juno's Radiation Monitoring Investigation collected particle counts and noise signatures from penetrating high-energy particle impacts in images acquired by the Stellar Reference Unit and Advanced Stellar Compass star trackers, and the Jupiter Infrared Auroral Mapper infrared imager. This coordinated observation campaign sampled radiation at the inner edges of the high-latitude lobes of the synchrotron emission region and more distant environments. Inferred omnidirectional >5 MeV and >10 MeV electron fluxes derived from these measurements provide valuable constraints for models of relativistic electron environments in the inner radiation belts. Several intense bursts of high-energy particle counts were also observed by the Advanced Stellar Compass in polar regions outside the radiation belts

    Ganymede MHD Model: Magnetospheric Context for Juno's PJ34 Flyby

    Full text link
    On June 7th, 2021 the Juno spacecraft visited Ganymede and provided the first in situ observations since Galileo's last flyby in 2000. The measurements obtained along a one-dimensional trajectory can be brought into global context with the help of three-dimensional magnetospheric models. Here we apply the magnetohydrodynamic model of Duling et al. (2014) to conditions during the Juno flyby. In addition to the global distribution of plasma variables we provide mapping of Juno's position along magnetic field lines, Juno's distance from closed field lines and detailed information about the magnetic field's topology. We find that Juno did not enter the closed field line region and that the boundary between open and closed field lines on the surface matches the poleward edges of the observed auroral ovals. To estimate the sensitivity of the model results, we carry out a parameter study with different upstream plasma conditions and other model parameters

    Observations of interplanetary dust by the Juno magnetometer investigation

    Get PDF
    One of the Juno magnetometer investigation's star cameras was configured to search for unidentified objects during Juno's transit en route to Jupiter. This camera detects and registers luminous objects to magnitude 8. Objects persisting in more than five consecutive images and moving with an apparent angular rate of between 2 and 18,000 arcsec/s were recorded. Among the objects detected were a small group of objects tracked briefly in close proximity to the spacecraft. The trajectory of these objects demonstrates that they originated on the Juno spacecraft, evidently excavated by micrometeoroid impacts on the solar arrays. The majority of detections occurred just prior to and shortly after Juno's transit of the asteroid belt. This rather novel detection technique utilizes the Juno spacecraft's prodigious 60 sq. m of solar array as a dust detector and provides valuable information on the distribution and motion of interplanetary (greater than a micron) dust. Plain Language Summary: The Juno magnetometer investigation uses star cameras co-located with the magnetic sensors at the outer end of one of Juno's solar arrays. These cameras compare images with an onboard star catalog to determine the orientation of the sensors in inertial space. They also serendipitously recorded multiple images of small particles excavated from the spacecraft by high-velocity dust impacts. We trace their trajectories back in time to demonstrate that they evolved from the spacecraft. This allows us to use the vast collecting area of Juno's solar arrays (60 sq. m)as a novel dust detector, sensitive to particles with a mass range never before measured in situ

    The Juno Magnetic Field Investigation

    Get PDF
    The Juno Magnetic Field investigation (MAG) characterizes Jupiter's planetary magnetic field and magnetosphere, providing the first globally distributed and proximate measurements of the magnetic field of Jupiter. The magnetic field instrumentation consists of two independent magnetometer sensor suites, each consisting of a tri-axial Fluxgate Magnetometer (FGM) sensor and a pair of co-located imaging sensors mounted on an ultra-stable optical bench. The imaging system sensors are part of a subsystem that provides accurate attitude information (to approx. 20 arcsec on a spinning spacecraft) near the point of measurement of the magnetic field. The two sensor suites are accommodated at 10 and 12 m from the body of the spacecraft on a 4 m long magnetometer boom affixed to the outer end of one of 's three solar array assemblies. The magnetometer sensors are controlled by independent and functionally identical electronics boards within the magnetometer electronics package mounted inside Juno's massive radiation shielded vault. The imaging sensors are controlled by a fully hardware redundant electronics package also mounted within the radiation vault. Each magnetometer sensor measures the vector magnetic field with 100 ppm absolute vector accuracy over a wide dynamic range (to 16 Gauss = 1.6 x 10(exp. 6) nT per axis) with a resolution of approx. 0.05 nT in the most sensitive dynamic range (+/-1600 nT per axis). Both magnetometers sample the magnetic field simultaneously at an intrinsic sample rate of 64 vector samples per second. The magnetic field instrumentation may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. The attitude determination system compares images with an on-board star catalog to provide attitude solutions (quaternions) at a rate of up to 4 solutions per second, and may be configured to acquire images of selected targets for science and engineering analysis. The system tracks and catalogs objects that pass through the imager field of view and also provides a continuous record of radiation exposure. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors, and residual spacecraft fields andor sensor offsets are monitored in flight taking advantage of Juno's spin (nominally 2 rpm) to separate environmental fields from those that rotate with the spacecraft

    The complex behavior of the satellite footprints at Jupiter: the result of universal processes?

    Full text link
    At Jupiter, some auroral emissions are directly related to the electromagnetic interaction between the moons Io, Europa and Ganymede on one hand and the rapidly rotating magnetospheric plasma on the other hand. Out of the three, the Io footprint is the brightest and the most studied. Present in each hemisphere, it is made of at least three different spots and an extended trailing tail. The variability of the brightness of the spots as well as their relative location has been tentatively explained with a combination of Alfvén waves’ partial reflections on density gradients and bi-directional electron acceleration at high latitude. Should this scenario be correct, then the other footprints should also show the same behavior. Here we show that all footprints are, at least occasionally, made of several spots and they all display a tail. We also show that these spots share many characteristics with those of the Io footprint (i.e. some significant variability on timescales of 2-3 minutes). Additionally, we present some Monte-Carlo simulations indicating that the tails are also due to Alfvén waves electron acceleration rather than quasi-static electron acceleration. Even if some details still need clarification, these observations strengthen the scenario proposed for the Io footprint and thus indicate that these processes are universal. In addition, we will present some early results from Juno-UVS concerning the location and morphology of the footprints during the first low-altitude observations of the polar aurorae. These observations, carried out in previously unexplored longitude ranges, should either confirm or contradict our understanding of the footprints

    Possible Transient Luminous Events observed in Jupiter's upper atmosphere

    Full text link
    11 transient bright flashes were detected in Jupiter's atmosphere using the UVS instrument on the Juno spacecraft. These bright flashes are only observed in a single spin of the spacecraft and their brightness decays exponentially with time, with a duration of ~1.4 ms. The spectra are dominated by H2 Lyman band emission and based on the level of atmospheric absorption, we estimate a source altitude of 260 km above the 1-bar level. Based on these characteristics, we suggest that these are observations of Transient Luminous Events (TLEs) in Jupiter's upper atmosphere. In particular, we suggest that these are elves, sprites or sprite halos, three types of TLEs that occur in the Earth's upper atmosphere in response to tropospheric lightning strikes. This is supported by visible light imaging, which shows cloud features typical of lightning source regions at the locations of several of the bright flashes. TLEs have previously only been observed on Earth, although theoretical and experimental work has predicted that they should also be present on Jupiter.Comment: Accepted in JGR: Planets. 28 pages, 8 figure
    corecore