1,565 research outputs found

    The Role of Pragmatics in Solving the Winograd Schema Challenge

    Get PDF
    Different aspects and approaches to commonsense reasoning have been investigated in order to provide solutions for the Winograd Schema Challenge (WSC). The vast complexities of natural language processing (parsing, assigning word sense, integrating context, pragmatics and world-knowledge, ...) give broad appeal to systems based on statistical analysis of corpora. However, solutions based purely on learning from corpora are not currently able to capture the semantics underlying the WSC - which was intended to provide problems whose solution requires knowledge and reasoning, rather than statistical analysis of superficial lexical features. In this paper we consider the WSC as a means for highlighting challenges in the field of commonsense reasoning more generally. We begin by discussing issues with current approaches to the WSC. Following this we outline some key challenges faced, in particular highlighting the importance of dealing with pragmatics. We then argue for an alternative approach which favours the use of knowledge bases where the deep semantics of the different interpretations of commonsense terms are formalised. Furthermore, we suggest using heuristic approaches based on pragmatics to determine appropriate configurations of both reasonable interpretations of terms and necessary assumptions about the world

    Extending structures I: the level of groups

    Full text link
    Let HH be a group and EE a set such that HEH \subseteq E. We shall describe and classify up to an isomorphism of groups that stabilizes HH the set of all group structures that can be defined on EE such that HH is a subgroup of EE. A general product, which we call the unified product, is constructed such that both the crossed product and the bicrossed product of two groups are special cases of it. It is associated to HH and to a system ((S,1S,),,,f)\bigl((S, 1_S,\ast), \triangleleft, \, \triangleright, \, f \bigl) called a group extending structure and we denote it by HSH \ltimes S. There exists a group structure on EE containing HH as a subgroup if and only if there exists an isomorphism of groups (E,)HS(E, \cdot) \cong H \ltimes S, for some group extending structure ((S,1S,),,,f)\bigl((S, 1_S,\ast), \triangleleft, \, \triangleright, \, f \bigl). All such group structures on EE are classified up to an isomorphism of groups that stabilizes HH by a cohomological type set K2(H,(S,1S)){\mathcal K}^{2}_{\ltimes} (H, (S, 1_S)). A Schreier type theorem is proved and an explicit example is given: it classifies up to an isomorphism that stabilizes HH all groups that contain HH as a subgroup of index 2.Comment: 17 pages; to appear in Algebras and Representation Theor

    Pyrite-induced hydroxyl radical formation and its effect on nucleic acids

    Get PDF
    BACKGROUND: Pyrite, the most abundant metal sulphide on Earth, is known to spontaneously form hydrogen peroxide when exposed to water. In this study the hypothesis that pyrite-induced hydrogen peroxide is transformed to hydroxyl radicals is tested. RESULTS: Using a combination of electron spin resonance (ESR) spin-trapping techniques and scavenging reactions involving nucleic acids, the formation of hydroxyl radicals in pyrite/aqueous suspensions is demonstrated. The addition of EDTA to pyrite slurries inhibits the hydrogen peroxide-to-hydroxyl radical conversion, but does not inhibit the formation of hydrogen peroxide. Given the stability of EDTA chelation with both ferrous and ferric iron, this suggests that the addition of the EDTA prevents the transformation by chelation of dissolved iron species. CONCLUSION: While the exact mechanism or mechanisms of the hydrogen peroxide-to-hydroxyl radical conversion cannot be resolved on the basis of the experiments reported in this study, it is clear that the pyrite surface promotes the reaction. The formation of hydroxyl radicals is significant because they react nearly instantaneously with most organic molecules. This suggests that the presence of pyrite in natural, engineered, or physiological aqueous systems may induce the transformation of a wide range of organic molecules. This finding has implications for the role pyrite may play in aquatic environments and raises the question whether inhalation of pyrite dust contributes to the development of lung diseases

    Grifonin-1: A Small HIV-1 Entry Inhibitor Derived from the Algal Lectin, Griffithsin

    Get PDF
    Background: Griffithsin, a 121-residue protein isolated from a red algal Griffithsia sp., binds high mannose N-linked glycans of virus surface glycoproteins with extremely high affinity, a property that allows it to prevent the entry of primary isolates and laboratory strains of T- and M-tropic HIV-1. We used the sequence of a portion of griffithsin's sequence as a design template to create smaller peptides with antiviral and carbohydrate-binding properties. Methodology/Results: The new peptides derived from a trio of homologous β-sheet repeats that comprise the motifs responsible for its biological activity. Our most active antiviral peptide, grifonin-1 (GRFN-1), had an EC50 of 190.8±11.0 nM in in vitro TZM-bl assays and an EC50 of 546.6±66.1 nM in p24gag antigen release assays. GRFN-1 showed considerable structural plasticity, assuming different conformations in solvents that differed in polarity and hydrophobicity. Higher concentrations of GRFN-1 formed oligomers, based on intermolecular β-sheet interactions. Like its parent protein, GRFN-1 bound viral glycoproteins gp41 and gp120 via the N-linked glycans on their surface. Conclusion: Its substantial antiviral activity and low toxicity in vitro suggest that GRFN-1 and/or its derivatives may have therapeutic potential as topical and/or systemic agents directed against HIV-1

    Academic Performance and Behavioral Patterns

    Get PDF
    Identifying the factors that influence academic performance is an essential part of educational research. Previous studies have documented the importance of personality traits, class attendance, and social network structure. Because most of these analyses were based on a single behavioral aspect and/or small sample sizes, there is currently no quantification of the interplay of these factors. Here, we study the academic performance among a cohort of 538 undergraduate students forming a single, densely connected social network. Our work is based on data collected using smartphones, which the students used as their primary phones for two years. The availability of multi-channel data from a single population allows us to directly compare the explanatory power of individual and social characteristics. We find that the most informative indicators of performance are based on social ties and that network indicators result in better model performance than individual characteristics (including both personality and class attendance). We confirm earlier findings that class attendance is the most important predictor among individual characteristics. Finally, our results suggest the presence of strong homophily and/or peer effects among university students

    Cell-based analysis of CAD variants identifies individuals likely to benefit from uridine therapy.

    Get PDF
    PURPOSE: Pathogenic autosomal recessive variants in CAD, encoding the multienzymatic protein initiating pyrimidine de novo biosynthesis, cause a severe inborn metabolic disorder treatable with a dietary supplement of uridine. This condition is difficult to diagnose given the large size of CAD with over 1000 missense variants and the nonspecific clinical presentation. We aimed to develop a reliable and discerning assay to assess the pathogenicity of CAD variants and to select affected individuals that might benefit from uridine therapy. METHODS: Using CRISPR/Cas9, we generated a human CAD-knockout cell line that requires uridine supplements for survival. Transient transfection of the knockout cells with recombinant CAD restores growth in absence of uridine. This system determines missense variants that inactivate CAD and do not rescue the growth phenotype. RESULTS: We identified 25 individuals with biallelic variants in CAD and a phenotype consistent with a CAD deficit. We used the CAD-knockout complementation assay to test a total of 34 variants, identifying 16 as deleterious for CAD activity. Combination of these pathogenic variants confirmed 11 subjects with a CAD deficit, for whom we describe the clinical phenotype. CONCLUSIONS: We designed a cell-based assay to test the pathogenicity of CAD variants, identifying 11 CAD-deficient individuals who could benefit from uridine therapy

    Accreting Millisecond X-Ray Pulsars

    Full text link
    Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories without parallel in the study of extreme physics. In this chapter we review the past fifteen years of discoveries in the field. We summarize the observations of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength observations that have been carried out since the discovery of the first AMXP in 1998. We review accretion torque theory, the pulse formation process, and how AMXP observations have changed our view on the interaction of plasma and magnetic fields in strong gravity. We also explain how the AMXPs have deepened our understanding of the thermonuclear burst process, in particular the phenomenon of burst oscillations. We conclude with a discussion of the open problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer; [revision with literature updated, several typos removed, 1 new AMXP added
    corecore