
Cell-based analysis of CAD variants identifies individuals
likely to benefit from uridine therapy

Francisco del Caño-Ochoa, PhD1,2,25, Bobby G. Ng, BS3, Malak Abedalthagafi, MD4,
Mohammed Almannai, MD5, Ronald D. Cohn, MD6,7,8,9, Gregory Costain, MD6,10, Orly Elpeleg, MD11,

Henry Houlden, MD, PhD12, Ehsan Ghayoor Karimiani, MD, PhD13, Pengfei Liu, PhD14,15,
M. Chiara Manzini, PhD16, Reza Maroofian, PhD12, Michael Muriello, MD17,18, Ali Al-Otaibi, MD19,
Hema Patel, MD20, Edvardson Shimon, MD21, V. Reid Sutton, MD22, Mehran Beiraghi Toosi, MD23,

Lynne A. Wolfe, MS24, Jill A. Rosenfeld, MS14,15, Hudson H. Freeze, PhD3 and
Santiago Ramón-Maiques, PhD 1,2,25

Purpose: Pathogenic autosomal recessive variants in CAD, encoding
the multienzymatic protein initiating pyrimidine de novo biosynth-
esis, cause a severe inborn metabolic disorder treatable with a dietary
supplement of uridine. This condition is difficult to diagnose given
the large size of CAD with over 1000 missense variants and
the nonspecific clinical presentation. We aimed to develop a
reliable and discerning assay to assess the pathogenicity of CAD
variants and to select affected individuals that might benefit from
uridine therapy.

Methods: Using CRISPR/Cas9, we generated a human CAD-
knockout cell line that requires uridine supplements for survival.
Transient transfection of the knockout cells with recombinant
CAD restores growth in absence of uridine. This system determines
missense variants that inactivate CAD and do not rescue the growth
phenotype.

Results:We identified 25 individuals with biallelic variants in CAD
and a phenotype consistent with a CAD deficit. We used the CAD-
knockout complementation assay to test a total of 34 variants,
identifying 16 as deleterious for CAD activity. Combination of these
pathogenic variants confirmed 11 subjects with a CAD deficit, for
whom we describe the clinical phenotype.

Conclusions: We designed a cell-based assay to test the
pathogenicity of CAD variants, identifying 11 CAD-deficient
individuals who could benefit from uridine therapy.
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INTRODUCTION
CAD encodes a multienzymatic cytoplasmic protein harbor-
ing four functional domains, each catalyzing one of the initial
reactions for de novo biosynthesis of pyrimidine nucleotides:
glutamine amidotransferase (GLN), carbamoyl phosphate
synthetase (SYN), aspartate transcarbamoylase (ATC), and
dihydroorotase (DHO)1–3 (Fig. 1). This metabolic pathway

is essential for nucleotide homeostasis, cell growth, and
proliferation.4 Defects in dihydroorotate dehydrogenase
(DHODH) or UMP synthetase (UMPS), the enzymes
catalyzing the next steps in the pathway after CAD, are
associated with severe human disorders (Miller syndrome
[OMIM 263750]5 and orotic aciduria [OMIM 258900]6). In
2015, we identified a single individual with early infantile
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epileptic encephalopathy and two variants in CAD, one an in-
frame deletion of an exon and the other a missense variant
(p.R2024Q) in a highly conserved residue.7 Metabolic analysis
of subject fibroblasts showed impaired CAD activity–
dependent incorporation of 3H-labeled aspartate into nucleic
acids and nucleotide sugars, precursors for glycoprotein
synthesis. Uridine supplements corrected this CAD-
associated congenital disorder of glycosylation (CDG; OMIM
616457), suggesting a simple potential treatment. In two
subsequent reports, five affected individuals from four
unrelated families with similar symptoms showed likely
pathogenic variants in CAD, but no functional studies were
done.8,9 However, uridine treatment of three suspected
individuals showed striking improvement, with cessation of
seizures and significant progression from minimally conscious
state to communication and walking. Recently, uridine
triacetate (Xuriden) was approved by the FDA to treat
hereditary orotic aciduria;10 presumably, it could be used to
treat affected individuals with CAD deficiency.
The attractiveness of a simple therapy brought 25 suspected

individuals to our attention for evaluation. Unfortunately, the
metabolic labeling assay using 3H-labeled aspartate has a low
resolution and a narrow dynamic range. To have a more reliable
and discerning assay, we tested the ability of each variant to
rescue growth of a human CAD-knockout cell line that requires
uridine supplements for survival. Surprisingly, only 11 of
25 suspected individuals had pathologic variants and would
potentially benefit from uridine supplements. We describe the
development of this functional assay, the general clinical
phenotype, and analysis of these individuals. We caution about
relying on current prediction programs to assess pathogenicity
of variants for this large multifunctional enzyme.

MATERIALS AND METHODS
Clinical data
Informed consent was provided by all subjects in accordance
with each clinician’s individual institution. Additional consent
to analyze samples was provided in accordance with Sanford
Burnham Prebys Medical Discovery Institute (IRB-2014-
038-17).

CRISPR/Cas9 plasmid
pSpCas9 (BB)-2A-Puro (PX459) vector (Addgene), encod-
ing Cas9, was digested with BbsI and purified with Qiaquick

Gel Extraction kit (Qiagen). Complementary double-
stranded DNA (dsDNA) oligonucleotides encoding single
guide RNA (sgRNA), designed to target the first exon of
CAD, were purchased (Sigma) with 5’ overhangs comple-
mentary to the BbsI site and an extra G base to favor
transcription11 (Table S1). The oligonucleotides were
phosphorylated with T4 polynucleotide kinase (NEB),
annealed, and inserted in the linearized vector with T4
DNA ligase (NEB). The construct was amplified in TOP10
E. coli cells (ThermoFisher), verified by sequencing, and
purified with a Plasmid Midi kit (Qiagen).

GFP-CAD plasmid
Enhanced green fluorescent protein (GFP) coding sequence was
obtained by HindIII and KpnI digestion of pPEU2 vector
(kindly provided by Dr. Nick Berrow, IRB Barcelona), and
ligated into pCDNA3.1 (Promega) linearized with same
restrictions enzymes. The resulting plasmid (pcDNA3.1-GFP)
was verified by sequencing. Human CAD was polymerase chain
reaction (PCR) amplified from complementary DNA (cDNA)
(Open Biosystems clone ID 5551082) using specific primers
(Table S1) and ligated with In-Fusion (Clontech) into NotI
linearized pcDNA3.1-GFP. The resulting plasmid (pcDNA3.1-
GFPhuCAD) encodes an N-terminal histidine-tagged GFP
followed in-frame by human CAD. Site-directed mutagenesis
was carried out following the QuickChange protocol (Strata-
gene) and a pair of specific oligonucleotides (Table S1) and
PfuUltra High-Fidelity DNA polymerase (Agilent).

Generating a CAD-knockout cell line
Human U2OS (bone osteosarcoma) cells were grown in DMEM
(Lonza), 10% fetal bovine serum (FBS; Sigma), 2 mM L-
glutamine (Lonza), and 50 U·ml−1 penicillin and 50 μg·ml−1

streptomycin (Invitrogen), at 5% CO2 and 37 °C. One day
before transfection, 1.5–2 × 105 U2OS cells in a final volume of
500 µl of medium were transferred to 24-well plates to reach
approximately 50–80% confluence. For transfection, 2 µg of
DNA in 50 µl of DMEM and 50 µl of FuGene6 transfection
reagent (Promega) at 1 mg·ml−1 in DMEM were incubated
separately for 5minutes at room temperature, and then mixed
together and incubated at room temperature for an additional
10minutes. The 100 µl mix was added to the wells drop by
drop, followed by a 16-hour incubation at 37 °C and 5% CO2.
Twenty-four hours post transfection, puromycin was added for
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Fig. 1 Schematic of the pathway for de novo biosynthesis of the pyrimidine nucleotide uridine 5-monophosphate (UMP). The initial enzymatic
activities, glutaminase (GLN), carbamoyl phosphate synthetase (SYN), aspartate transcarbamoylase (ATC), and dihydroorotase (DHO) are fused into the
multifunctional protein CAD. The next reaction after CAD is catalyzed by dihydroorotate dehydrogenase (DHODH), an enzyme anchored to the inner
mitochondrial membrane. The last two steps are catalyzed by UMP synthase (UMPS), a bifunctional enzyme with orotate phosphoribosyl transferase (OPRT)
and orotidine decarboxylase (ODC) activities. Alternatively, UMP can be obtained from uridine through salvage pathways (depicted in cyan).
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one week to select transfected cells and enhance Cas9 cleavage.
Media was supplemented with 30 µM uridine (Sigma) to allow
growth of CAD-deficient cells. Individual cells were isolated by
serial dilution in 96-well plates, seeded into 24-well plates, and
expanded for 2–3 weeks. To identify CAD-deficient clones, a
replica of the plate was grown in media with 10% fetal bovine
macroserum (FBM) without uridine, instead of FBS. FBM was
prepared as reported.12 In brief, 50 ml of heat-inactivated FBS
were dialyzed against 1 L of tap water for 1 day at 4 °C using
SpectraPor #3 dialysis tubing with a molecular weight cutoff of
3500 Da (Spectrum Laboratories, Inc., USA), supplemented
with NaCl (9 g per liter), sterilized with a 0.22-µm filter, and
stored at −20 °C. Disruption of CAD was confirmed by Sanger
sequencing. For this, exon 1 of CAD was PCR amplified with
specific primers (Table S1), inserted in ZeroBlunt vector
(Invitrogen) and sequenced with M13 primer. CAD-deficient
cells were confirmed by western blot and immunofluorescence
microscopy using a monoclonal antibody (Cell Signaling
Technology, #93925).

Growth complementation assay
U2OS CAD-KO cells were transfected with wild-type (WT) or
mutated pcDNA3.1-GFPhuCAD using FuGene6 as detailed
above. One day after transfection, 1 × 105 cells were seeded by
duplicate in 24-well plates using media supplemented with
10% FBM (without uridine). Every 24 hours, cells from one
well were trypsinized and counted using a Countess II
FL Automated Cell Counter (Thermo) or a Neubauer
chamber. Doubling time was calculated using an online tool
(http://www.doubling-time.com/compute.php).

RESULTS
Validation of a growth complementation assay in CAD-
knockout cells
We wanted to create a CAD-knockout (KO) cell line that
could be used to assess the pathogenicity of CAD variants.
Using CRISPR/Cas9 technology, we knocked out CAD in
human U2OS cells by selecting an isogenic clone that
introduced a homozygous c.70delG frameshift (p.Ala24-
Profs*27) within exon 1 (Fig. 2a–c). We verified by western
blot and immunofluorescence that CAD-KO cells do not
express CAD (Fig. 2c, d). As expected, these cells are unable
to grow in absence of uridine, but proliferate at similar rate as
WT cells in media supplemented with 30 µM exogenous
uridine (Fig. 2e). Next, we transiently transfected KO cells
with a plasmid encoding human CAD fused to the enhanced
GFP at the N-terminus (Fig. 2f). CAD-KO cells expressing
GFP-CAD proliferated in uridine-deprived conditions at a
normal rate (doubling time ∼1 day), whereas cells transfected
with GFP alone did not grow (Fig. 2g).
To confirm that all four enzymatic activities of CAD were

needed for de novo pyrimidine synthesis and cell growth in
absence of uridine, we measured the proliferation of CAD-KO
cells transfected with GFP-CAD bearing well-known inacti-
vating variants for each activity (Fig. 2g). The transfected
inactivated variants in the SYN (p.H627N, p.E682Q),13,14

DHO (p.D1686N),15 and ATC (p.R2024Q)7,16 domains failed
to rescue the growth of CAD-KO cells. In turn, the GLN
inactive mutant (p.C252S)17 showed a partial rescue, with
transfected cells doubling every ∼2.5 days, suggesting that free
ammonia can, to some extent, contribute to the synthesis of
carbamoyl phosphate (Fig. 1).

Identification and impact of potential CAD variants
Since CAD encodes a large protein with 2225 amino acids
covering 44 exons (Fig. 2a), it is not surprising that all
previously reported (n= 6) affected individuals were identi-
fied using next-generation sequencing (NGS).7–9 Likewise,
using NGS we identified 25 potential CAD-deficient indivi-
duals based on the presence of biallelic variants and a clinical
phenotype similar to previously reported individuals (Table 1).
Ultimately, we tested 34 variants of uncertain significance
(VUS) in our validated knockout assay.
To assess the damaging potential of variants found in

subjects, we transfected CAD-KO cells with GFP-CAD
bearing the clinical variants and monitored proliferation in
uridine-deprived conditions (Fig. 3a–d). Each newly con-
structed plasmid carrying an individual-specific variant
required complete sequencing of the ∼8 kb GFP-CAD cDNA
to ensure no additional changes were introduced during PCR.
We also verified the efficiency of the transfection (>95%) and
that the mutated proteins were being expressed by imaging
the GFP fluorescence signal in the CAD-KO cells two days
after transfection (data not shown).
Three of the seven variants found in the GLN domain, p.M33R, p.

G296E, and p.N320S, showed a partial rescue (Fig. 3a). The doubling
time was similar to the cells transfected with the GLN inactivating
variant p.C252S (Fig. 2g), indicating that these variants impair the
GLN domain. On the other hand, cells transfected with SYN variants
p.G526R, p.R742Q, p.P796T, p.V999M, and p.R1033Q failed to
proliferate, whereas the variant p.P1171Q showed a partial rescue
(Fig. 3b). Of the eight variants of the DHO domain tested, only two,
p.K1556T and p.R1785C, failed to restore cell growth (Fig. 3c). For
the ATC variants, three variants, p.R1986Q, p.L1987V and p.P2186S,
failed to rescue the cells, whereas p.R2110L and p.E2128K allowed a
partial rescue (Fig. 3d). Finally, transfection with the two variants
found at the linker between the DHO and ATC domains (p.R1854Q
and p.R1857Q) restored normal growth (Fig. 3d).
Based on these results, we concluded that the failure to rescue

the growth phenotype of CAD-KO cells in absence of uridine
indicates that 16 of the 34 variants tested have a deleterious
effect on CAD activity and therefore are pathogenic.
Interestingly, significant differences were seen when compar-

ing the results of the KO assay with three popular in silico
prediction programs (SIFT,18 PolyPhen-2,19 CADD20) (Table 1).
All three prediction programs agreed with each other for 20/34
variants (59%; 15/34 pathogenic, 5/34 benign variants). Yet only
38% (13/34) (9/34 pathogenic, 4/34 benign) of the variants
agreed in all three prediction programs and the complementa-
tion assay. We used a CADD PHRED score of above 20, which
places a variant in the top 1% deleterious variants in the human
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genome as potentially pathogenic. Below 20, we considered
likely benign.
The mechanisms of inactivation of the pathogenic variants

will be described in a separate study.

Clinical
To date, only six affected individuals from five unrelated
families have been identified with CAD deficiencies.7–9 The
clinical presentation is general in nature, but all these

individuals showed varying severities of neurological involve-
ment including developmental delays and/or seizures.
Furthermore, all had hematological abnormalities including
abnormal red blood cells (anisopoikilocytosis) and anemia.
Two of the six are reported to be deceased, while the
remaining four received uridine.
In this study, we identified 25 individuals with biallelic

variants in CAD, who presented with a phenotype
potentially consistent with CAD deficiency. We used the
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respective functional domains; detail of the 5’ region of exon 1, indicating the single guide RNA (sgRNA) with protospacer adjacent motif (PAM) sequences
in red boxes. (b) Sequencing of five clones selected after CRISPR-Cas9 editing shows insertions and deletions (highlighted in red) in exon 1. (c) Expression of
CAD in total lysates of clones shown in (a) analyzed by western blot with a monoclonal antibody. Clone 5, chosen as the CAD-knockout (KO) cell for further
studies, produces an early truncated CAD protein of 48 residues with an incorrect sequence colored in red. (d) Immunofluorescence of wild-type (WT) and
CAD-KO U2OS cells, using a monoclonal antibody against CAD (red signal) and nuclear labeling with Hoechst (blue signal). (e) Proliferation assay of CAD-KO
cells in media with or without uridine, compared with the growth of WT cells. (f) Imaging of CAD-KO cells transiently transfected with GFP-CAD, using GFP
fluorescent signal (green) and Hoechst (blue). (g) Transfection of GFP-CAD rescues the growth phenotype of CAD-KO in uridine-deprived media. Cells
transfected with GFP alone do not proliferate. Cells transfected with GFP-CAD variants bearing well-characterized inactivating variants in the SYN, DHO, or
ATC domains fail to proliferate without uridine, whereas the inactivation of the GLN domain (variant C252S) allows limited growth. Scale bars in
(d, f) indicate 20 µm.

ARTICLE DEL CAÑO-OCHOA et al

4 Volume 0 | Number 0 | Month | GENETICS in MEDICINE



CAD-KO complementation assay described above to
determine the pathogenicity of each variant identified and
ultimately confirmed 11 CAD-deficient subjects (Table 1,
Fig. 3e).
Detailed clinical information was available and provided for

10 of the 11 confirmed individuals (Fig. 4). Consistent with
the initial CAD-deficient individuals,7,8 all ten individuals
presented here showed varying neurological abnormalities. All
had intellectual and developmental disability, while 9/10
(90%) had seizure activity. Gastrointestinal complications
ranging from feeding problems, reflux, and recurrent vomit-
ing were seen in half (5/10) of the individuals, as was facial
dysmorphism, hypotonia, and ataxia. All five of the previously

identified subjects showed hematological abnormalities, while
in our cohort this was 4/10 (40%). Less affected systems
included the skeleton (3/10) and the heart (2/10).
In our cohort, one individual was noted to have died (CDG-

0118). However, four families (0017, 0104, 0118, 0123) were
noted to have a family history of multiple affected siblings
with a similar presentation. From these four families, three
had at least one sibling with a similar disorder who expired.
Due to the lack of detailed clinical information, CDG-0117

was not included in the final summary. However, he was
noted to have structural brain abnormalities and a family
history significant for premature death in two affected female
siblings. Importantly, genomic DNA was available for one of

Table 1 Summary of CAD variants.
IDa cDNAb Amino acid SIFT

category
SIFT
valuec

PolyPhen2
category

PolyPhen2
valuec

CADD
PHREDc

KO rescue
results

gnomAD
carriers/alleles

Baylor - 001d c.2156+5G>A NA NA NA NA NA 10.62 NA 4/251138
c.4667A>C p.K1556T tolerated 0.38 possibly_damaging 0.631 24.1 Pathogenic 1/251278

Baylor - 002 c.5147C>T p.T1716M deleterious 0 probably_damaging 0.982 25.9 Benign 17/281494
c.5561G>A p.R1854Q tolerated 0.25 benign 0.186 23.8 Benign 15/282772

Baylor - 003 c.2372A>C p.D791A deleterious 0.04 possibly_damaging 0.473 26.8 Benign NA
c.4487G>C p.G1496A deleterious 0 probably_damaging 0.999 27 Benign NA

Baylor - 004 c.713G>A p.R238H deleterious 0.05 benign 0.104 18.27 Benign 109/282876
c.1159G>A p.G387S tolerated 0.67 benign 0 7.152 Benign 11/251452

Baylor - 005 c.4501T>A p.C1501S tolerated 0.44 possibly_damaging 0.636 23.8 Benign 1/251356
c.6556C>T p.P2186S deleterious 0 probably_damaging 0.999 32 Pathogenic NA

Baylor - 006 c.419A>G p.Q140R tolerated 0.42 benign 0.029 18.14 Benign 2/282842
c.5570G>A p.R1857Q tolerated 0.17 benign 0.022 23.7 Benign 8/282788

Baylor - 007 c.943G>A p.A315T deleterious 0.01 probably_damaging 0.971 26.4 Benign 4/251364
c.5353C>T p.R1785C deleterious 0 probably_damaging 0.994 28.5 Pathogenic 3/251030

Baylor - 008 c.785T>C p.I262T tolerated 0.15 benign 0.185 22.7 Benign 7/282792
c.3868G>A p.G1290S tolerated 0.07 benign 0.058 16.78 Benign 31/282488

Baylor - 009 c.5147C>T p.T1716M deleterious 0 probably_damaging 0.982 25.9 Benign 17/281494
c.5561G>A p.R1854Q tolerated 0.25 benign 0.186 23.8 Benign 15/282772

Baylor - 010 c.3649G>A p.V1217I deleterious 0.02 possibly_damaging 0.483 25 Benign 3/251356
c.4568C>T p.A1523V tolerated 0.05 benign 0.391 23.6 Benign NA

Baylor - 011 c.959A>G p.N320S deleterious 0.02 benign 0.077 22.4 Pathogenic 9/282728
c.2984C>G p.S995C deleterious 0 probably_damaging 0.995 31 Benign NA

CDG - 0017 c.1576G>A p.G526R deleterious 0 possibly_damaging 0.657 26.7 Pathogenic 4/251224
c.1576G>A p.G526R deleterious 0 possibly_damaging 0.657 26.7 Pathogenic 4/251224

CDG - 0104 c.5959C>G p.L1987V deleterious 0 probably_damaging 0.992 26.4 Pathogenic NA
c.5959C>G p.L1987V deleterious 0 probably_damaging 0.992 26.4 Pathogenic NA

CDG - 0105 c.5959C>G p.L1987V deleterious 0 probably_damaging 0.992 26.4 Pathogenic NA
c.5959C>G p.L1987V deleterious 0 probably_damaging 0.992 26.4 Pathogenic NA

CDG - 0111 c.6329G>T p.R2110L tolerated 0.2 Benign 0.046 16.83 Pathogenic 1/251314
c.6329G>T p.R2110L tolerated 0.2 Benign 0.046 16.83 Pathogenic 1/251314

CDG - 0112 c.3098G>A p.R1033Q deleterious 0.01 possibly_damaging 0.537 31 Pathogenic 7/251346
c.3098G>A p.R1033Q deleterious 0.01 possibly_damaging 0.537 31 Pathogenic 7/251346

CDG - 0117 c.5957G>A p.R1986Q deleterious 0.01 probably_damaging 0.992 33 Pathogenic 3/249932
c.5957G>A p.R1986Q deleterious 0.01 probably_damaging 0.992 33 Pathogenic 3/249932

CDG - 0118 c.6382G>A p.E2128K tolerated 0.15 possibly_damaging 0.578 26.2 Pathogenic NA
c.6382G>A p.E2128K tolerated 0.15 possibly_damaging 0.578 26.2 Pathogenic NA

CDG - 0122 c.3512C>A p.P1171Q deleterious 0 probably_damaging 0.936 28.4 Pathogenic 1/251476
c.4315-1G>A NA NA NA NA NA 34 NA 1/31408

CDG - 0123 c.2995G>A p.V999M deleterious 0 probably_damaging 1 29.8 Pathogenic NA
c.2995G>A p.V999M deleterious 0 probably_damaging 1 29.8 Pathogenic NA

CDG - 0278 c.98T>G p.M33R deleterious 0 benign 0.223 24.9 Pathogenic 1/243848
c.98T>G p.M33R deleterious 0 benign 0.223 24.9 Pathogenic 1/243848

CDG - 0443 c.713G>A p.R238H deleterious 0.05 benign 0.104 18.27 Benign 109/282876
Uniparental disomy Chr. 2

CDG - 1000 c.4669C>G p.L1557V tolerated 0.13 benign 0.003 21.9 Benign 62/282658
c.6320C>G p.P2107R tolerated 0.15 benign 0 16.49 Benign 2/282698

CDG - 1001 c.2386C>A p.P796T tolerated 0.53 benign 0.039 21.1 Pathogenic 10/282430
c.4735G>A p.E1579K tolerated 0.26 possibly_damaging 0.624 23.7 Benign 5/250930

CDG - 1046 c.887G>A p.G296E deleterious 0 probably_damaging 1 26.4 Pathogenic 6/251446
c.2225G>A p.R742Q deleterious 0.03 benign 0.414 25.3 Pathogenic NA

cDNA complementary DNA, KO knockout.
aCAD-deficient subjects are denoted with ID in bold.
bcDNA (NM_004341.5), Uniprot ID (P27708).
cSIFT Value (Closer to 0 is damaging), Polyphen (Closer to 1 is damaging), CADD (20 puts variant in top 1% of deleterious variants, 30 in top 0.1%).
dThis individual was found to have both variants in cis.
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the two deceased siblings and was found to also carry the
same homozygous c.5957G>A [p.R1986Q] CAD variant.
One family (CDG-0112) had a dual diagnosis of CAD

deficiency and a recessive intellectual developmental disorder
with cardiac arrhythmia (OMIM 617173). Within this family,

both affected siblings harbored a homozygous pathogenic
c.249+3A>G [p.Asp84Valfs31*] variant in GNB5,21 but only
the male sibling carried the pathogenic homozygous
c.3098G>A [p.R1033Q] variant in CAD. Given the clinical
similarities of these two disorders, especially the neurological

Q140R
R238H
I262T
A315T

M33R
G296E
N320S

0

20

40

60

80

100
C

el
l c

on
flu

en
ce

 (
%

)

0 2 4 6

Days

G387S
D791A
S995C

G1290S
V1217I

R742Q
P796T

R1033Q

G526R K1556T
R1785C

G1496A
C1501S

L1557V

T1716M

A1523V

E1579K

linker

R1857Q

P2107R

R1854Q
R1986Q

E2128K
P2186S

L1987V

GLN DHO ATC

a b c d

e

C1501S

E2128K
R1986Q

A315T

L1987V

P796T

G526R

N320S

G296E S6812PT6551KQ3301RR33M R1785C

S995C
E1579K

R742Q

NYSGLN DHO ATC

SYN

V999M

P1171Q

V999M P1171Q

R2110L

R2110L

Q140R
R238H

I262T G387S

V1217I

G1290S

G1496A

A1523V
L1557V T1716M

R1854Q

R1857Q

P2107R

0 2 4 6

Days

0 2 4 6

Days

0 2 4 6

Days

D791A

Fig. 3 Assessing the pathogenicity of CAD variants. (a–d) Growth complementation assay of CAD-knockout (KO) cells grown in absence of uridine and
transfected with GFP-CAD bearing point variants in the GLN (a), SYN (b), DHO (c), or ATC (d) domains. Variants in the loop connecting the DHO and ATC
domains are included in (d). Cell proliferation is represented as % confluence with respect to cells transfected with GFP-CAD wild type (WT). Each point
represents the mean and standard deviation of three measurements, and all mutants were tested in at least two independent experiments. Variants
compromising CAD activity are colored in red. (e) Linear representation of CAD, mapping the inactivating (in red) and benign (in black) variants.

0% 20% 40% 60% 80% 100%

90% (9/10)

100% (10/10)

100% (10/10)

50% (5/10)

50% (5/10)

50% (5/10)

50% (5/10)

50% (5/10)

40% (4/10)

30% (3/10)

20% (2/10)

Intellectual disability

Developmental delay

Seizures / Epilepsy

Feeding problems

Hypotonia

Ataxia or Gait problems

Facial dysmorphism

Gastrointestinal abnormalities

Anemia

Skeletal abnormalities

Cardiac abnormalities

% Affected

Fig. 4 Clinical summary for ten unreported CAD-deficient individuals. Clinical information for ten of the available subjects was collected and
summarized as % affected.

ARTICLE DEL CAÑO-OCHOA et al

6 Volume 0 | Number 0 | Month | GENETICS in MEDICINE



features, we cannot determine which symptoms are due to
specifically the CAD variant alone.

DISCUSSION
The prospect of a simple, nontoxic therapy for a potentially
lethal disorder excites all stakeholders: patients, caretakers,
physicians, and scientists. Identifying the first CAD-
deficient individual and showing that uridine corrects
cellular defects set the stage for the highly successful use
of uridine in two CAD-deficient individuals.7,8 As a result,
and given the nonspecific clinical presentation of CAD-
deficient individuals, we received many requests to test
subject fibroblasts in a functional assay that involves
labeling cells with 3H-aspartate to measure the CAD-
dependent contribution to de novo pyrimidine synthesis
(Fig. 1). However, the assay has a limited dynamic range
(~2-fold) and many determinations left us ambivalent and
uncertain about the diagnosis. Thus, a new robust and
reliable biochemical assay was required to evaluate the
pathogenicity of CAD variants.
We designed a CAD-knockout cell line whose growth was

dependent on added uridine (Fig. 2) and then tested each
variant for its ability to rescue uridine-independent growth
(Fig. 3a–d). Most of the variants either fully rescued growth,
meaning the variants were benign, or were unable to rescue
growth completely, showing they were pathologic variants.
Only a few showed partial rescue, which we interpret to mean
a damaging variant that decreases, but does not eliminate the
activity. When each variant was combined based on
individual-specific genotyping, we determined which indivi-
duals indeed had a CAD deficiency and therefore predict
which ones would benefit from uridine therapy (Fig. 3e and
Table 1). This is a stringent prediction based on each single
variant. It does not test the specific combination of alleles
found in each individual, but we assume the combination of
two variants would not cancel each other to generate a fully
capable CAD protein. If this were the case, it is unlikely
that the individuals themselves would show the expected
clinical phenotype. Surprisingly only 11 of the 25 suspected
individuals appeared to be authentic cases based on this
functional assay.
We also compared our assay results with three prediction

programs designed to assess the pathogenicity of each variant
(Table 1). There was considerable disagreement between the
programs for many variants, and the programs produced both
false positive and false negative results. Based on these
findings, we suggest that any suspected CAD cases first be
validated using this (or similar) biochemical assay. And it is
likely that more putative CAD-deficient cases will be
suspected, since CAD has ~1020 missense rare variants in
the public gnomAD browser (Ver2.1.1) database (https://
gnomad.broadinstitute.org; accessed 23 January 2020 with
125,748 exomes and 15,708 genomes). Some families may
choose to start uridine therapy without benefit of these
results. That is certainly possible since the uridine is available
to families and subjects over the Internet. Barring the

consumption of impure products, uridine is unlikely to be
harmful. On the other hand, using uridine supplements in
unconfirmed subjects may offer false hopes and complicate
the interpretation of successful uridine therapy.

SUPPLEMENTARY INFORMATION
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