3,340 research outputs found

    Ruptures and repairs of group therapy alliance. an untold story in psychotherapy research

    Get PDF
    Although previous studies investigated the characteristics of therapeutic alliance in group treatments, there is still a dearth of research on group alliance ruptures and repairs. The model by Safran and Muran was originally developed to address therapeutic alliance in individual therapies, and the usefulness of this approach to group intervention needs to be demonstrated. Alliance ruptures are possible at member to therapist, member to member, member to group levels. Moreover, repairs of ruptures in group are quite complex, i.e., because other group members have to process the rupture even if not directly involved. The aim of the current study is to review the empirical research on group alliance, and to examine whether the rupture repair model can be a suitable framework for clinical understanding and research of the complexity of therapeutic alliance in group treatments. We provide clinical vignettes and commentary to illustrate theoretical and research aspects of therapeutic alliance rupture and repair in groups. Our colleague Jeremy Safran made a substantial contribution to research on therapeutic alliance, and the current paper illustrates the enduring legacy of this work and its potential application to the group therapy context

    Novel antiproliferative biphenyl nicotinamide: NMR metabolomic study of its effect on the MCF-7 cell in comparison with cisplatin and vinblastine

    Get PDF
    A 1H-NMR-based metabolomic study was performed on MCF-7 cell lines treated with a novel nicotinamide derivative (DT-8) in comparison with two drugs characterized by a well-established mechanism of action, namely the DNA-metalating drug cisplatin (cis-diamminedichloridoplatinum(II), CDDP) and the antimitotic drug vinblastine (vinblastine, VIN). The effects of the three compounds, each one at the concentration corresponding to the IC50 value, were investigated, with respect to the controls (K), by the 1H-NMR of cells lysates and multivariate analysis (MVA) of the spectroscopic data. Relevant differences were found in the metabolic profiles of the different treatments with respect to the controls. A large overlap of the metabolic profiles in DT-8 vs. K and VIN vs. K suggests a similar biological response and mechanism of action, significantly diverse with respect to CDDP. On the other hand, DT8 seems to act by disorganizing the mitotic spindle and ultimately blocking the cell division, through a mechanism implying methionine depletion and/or S-adenosylmethionine (SAM) limitation

    Computationally designed libraries of fluorescent proteins evaluated by preservation and diversity of function

    Get PDF
    To determine which of seven library design algorithms best introduces new protein function without destroying it altogether, seven combinatorial libraries of green fluorescent protein variants were designed and synthesized. Each was evaluated by distributions of emission intensity and color compiled from measurements made in vivo. Additional comparisons were made with a library constructed by error-prone PCR. Among the designed libraries, fluorescent function was preserved for the greatest fraction of samples in a library designed by using a structure-based computational method developed and described here. A trend was observed toward greater diversity of color in designed libraries that better preserved fluorescence. Contrary to trends observed among libraries constructed by error-prone PCR, preservation of function was observed to increase with a library's average mutation level among the four libraries designed with structure-based computational methods

    1H-NMR metabolite fingerprinting analysis reveals a disease biomarker and a field treatment response in xylella fastidiosa subsp. Pauca-infected olive trees

    Get PDF
    Xylella fastidiosa subsp. pauca is a xylem-limited bacterial phytopathogen currently found associated on many hectares with the “olive quick decline syndrome” in the Apulia region (Southern Italy), and the cultivars Ogliarola salentina and Cellina di Nardò result in being particularly sensitive to the disease. In order to find compounds showing the capability of reducing the population cell density of the pathogen within the leaves, we tested, in some olive orchards naturally-infected by the bacterium, a zinc-copper-citric acid biocomplex, namely Dentamet®, by spraying it to the crown, once per month, during spring and summer. The occurrence of the pathogen in the four olive orchards chosen for the trial was molecularly assessed. A 1H NMR metabolomic approach, in conjunction with a multivariate statistical analysis, was applied to investigate the metabolic pattern of both infected and treated adult olive cultivars, Ogliarola salentina and Cellina di Nardò trees, in two sampling periods, performed during the first year of the trial. For both cultivars and sampling periods, the orthogonal partial least squares discriminant analysis (OPLS-DA) gave good models of separation according to the treatment application. In both cultivars, some metabolites such as quinic acid, the aldehydic form of oleoeuropein, ligstroside and phenolic compounds, were consistently found as discriminative for the untreated olive trees in comparison with the Dentamet®-treated trees. Quinic acid, a precursor of lignin, was confirmed as a disease biomarker for the olive trees infected by X. fastidiosa subsp. pauca. When treated with Dentamet®, the two cultivars showed a distinct response. A consistent increase in malic acid was observed for the Ogliarola salentina trees, whereas in the Cellina di Nardò trees the treatments attenuate the metabolic response to the infection. To note that in Cellina di Nardò trees at the first sampling, an increase in γ-aminobutyric acid (GABA) was observed. This study highlights how the infection incited by X. fastidiosa subsp. pauca strongly modifies the overall metabolism of olive trees, and how a zinc-copper-citric acid biocomplex can induce an early re-programming of the metabolic pathways in the infected trees

    Predictive role of the p16 immunostaining pattern in atypical cervical biopsies with less common high risk hpv genotypes

    Get PDF
    P16 immunostaining is considered a useful surrogate of transcriptionally active high‐risk (hr) HPV infection. Only strong and widespread “block‐like” immunoreactivity is considered specific, whereas weak/focal p16 positive immunostaining is considered not specific, and follow‐up and HPV molecular detection is not indicated. The aim of the study was to evaluate the presence of HPV DNA and Ki67 immunostaining in 40 cervical atypical biopsies (CALs) with mild and focal histological features suggestive of HPV infection—20 cases with weak/focal p16 positive immunoreactivity and 20 cases negative for p16 expression. In 16/20 weak/focal p16 positive CALs (80%), the INNO‐LiPA HPV genotyping detected hrHPV genotypes (HPV 31, 51, 56, 59, 26, 53, 66, 73, and 82). Co‐infection of two or more hrHPV genotypes was often evidenced. HPV16 and 18 genotypes were never detected. Ki67 immunostaining was increased in 10/20 cases (50%). In 19/20 p16 negative CALs, hrHPV infection was absent and Ki67 was not increased. These results suggest that weak/focal p16 immunostaining represents the early stage of transcriptionally active infection, strongly related to the presence of less common hrHPV genotypes, probably with a slower transforming power, but with a potential risk of progression if the infection persists. HPV DNA genotyping and follow‐up could be useful in these cases to verify if they are able to evolve into overt dysplastic changes and to improve knowledge of less common hrHPV genotypes

    Antenatal automatic diagnosis of cleft lip via unsupervised clustering method relying on 3D facial soft tissue landmarks

    Get PDF
    Objectives Ultrasound (US) is the first-choice device to detect different types of facial dysmorphisms. Anyway, at present no standard protocol has been defined for automatic nor semi-automatic diagnosis. Even though the practitioner's contribution is core, steps towards automatism are to be undertaken. We propose a methodology for diagnosing cleft lip on 3D US scans. Methods A bounded Depth Minimum Steiner Trees (D-MST) clustering algorithm is proposed for discriminating groups of 3D US faces relying on the presence/absence of a cleft lip. The analysis of 3D facial surfaces via Differential Geometry is adopted to extract landmarks. Thus, the extracted geometrical information is elaborated to feed the unsupervised clustering algorithm and produce the classification. The clustering returns the probability of being affected by the pathology, allowing physicians to focus their attention on risky individuals for further analysis. Results The feasibility is tested upon the available 3D US scans data and then deeply investigated for a large dataset of adult individuals. 3D facial Bosphorus database is chosen for the testing, which seven cleft lip-affected individuals are added to, by artificially creating the defect. The algorithm correctly separates left and right-sided cleft lips, while healthy individuals create a unique cluster; thus, the method shows accurate diagnosis results. Conclusions Even if further testing is to be performed on tailored datasets made exclusively of fetal images, this techniques gives hefty hints for a future tailored algorithm. This method also fosters the investigation of the scientific formalisation of the "normotype", which is the representative face of a class of individuals, collecting all the principal anthropometric facial measurements, in order to recognise a normal or syndromic fetus

    Joint Elastic Side-Scattering Lidar and Raman Lidar Measurements of Aerosol Optical Properties in South East Colorado

    Get PDF
    We describe an experiment, located in south-east Colorado, USA, that measured aerosol optical depth profiles using two Lidar techniques. Two independent detectors measured scattered light from a vertical UV laser beam. One detector, located at the laser site, measured light via the inelastic Raman backscattering process. This is a common method used in atmospheric science for measuring aerosol optical depth profiles. The other detector, located approximately 40km distant, viewed the laser beam from the side. This detector featured a 3.5m2 mirror and measured elastically scattered light in a bistatic Lidar configuration following the method used at the Pierre Auger cosmic ray observatory. The goal of this experiment was to assess and improve methods to measure atmospheric clarity, specifically aerosol optical depth profiles, for cosmic ray UV fluorescence detectors that use the atmosphere as a giant calorimeter. The experiment collected data from September 2010 to July 2011 under varying conditions of aerosol loading. We describe the instruments and techniques and compare the aerosol optical depth profiles measured by the Raman and bistatic Lidar detectors.Comment: 34 pages, 16 figure

    Gastro-intestinal symptoms as clinical manifestation of peritoneal and retroperitoneal spread of an invasive lobular breast cancer: report of a case and review of the literature

    Get PDF
    BACKGROUND: Distant spread from breast cancer is commonly found in bones, lungs, liver and central nervous system. Metastatic involvement of peritoneum and retroperitoneum is unusual and unexpected. CASE PRESENTATION: We report the case of a 67 year-old-woman who presented with gastrointestinal symptoms which revealed to be the clinical manifestations of peritoneal and retroperitoneal metastatic spread of an invasive lobular breast cancer diagnosed 15 years before. CONCLUSION: To the best of our knowledge, the case presented is the third one reported in literature showing a wide peritoneal and extraperitoneal diffusion of an invasive lobular breast cancer. The long and complex diagnostic work up which led us to the diagnosis is illustrated, with particular emphasis on the multidisciplinary approach, which is mandatory to obtain such a result in these cases. Awareness of such a condition by clinicians is mandatory in order to make an early diagnosis and start a prompt and correct therapeutic approach

    miRNA-guided reprogramming of glucose and glutamine metabolism and its impact on cell adhesion/migration during solid tumor progression

    Get PDF
    MicroRNAs (miRNAs) are small, non-coding RNAs about 22 nucleotides in length that regulate the expression of target genes post-transcriptionally, and are highly involved in cancer progression. They are able to impact a variety of cell processes such as proliferation, apoptosis and differentiation and can consequently control tumor initiation, tumor progression and metastasis formation. miRNAs can regulate, at the same time, metabolic gene expression which, in turn, influences relevant traits of malignancy such as cell adhesion, migration and invasion. Since the interaction between metabolism and adhesion or cell movement has not, to date, been well understood, in this review, we will specifically focus on miRNA alterations that can interfere with some metabolic processes leading to the modulation of cancer cell movement. In addition, we will analyze the signaling pathways connecting metabolism and adhesion/migration, alterations that often affect cancer cell dissemination and metastasis formation
    corecore