15 research outputs found

    Spatio-temporal assessment of WRF, TRMM and in situ precipitation data in a tropical mountain environment (Cordillera Blanca, Peru)

    Get PDF
    The estimation of precipitation over the broad range of scales of interest for climatologists, meteorologists and hydrologists is challenging at high altitudes of tropical regions, where the spatial variability of precipitation is important while in situ measurements remain scarce largely due to operational constraints. Three different types of rainfall products - ground based (kriging interpolation), satellite derived (TRMM3B42), and atmospheric model outputs (WRF - Weather Research and Forecasting) - are compared for 1 hydrological year in order to retrieve rainfall patterns at timescales ranging from sub-daily to annual over a watershed of approximately 10 000 km(2) in Peru. An ensemble of three different spatial resolutions is considered for the comparison (27, 9 and 3 km), as long as well as a range of timescales (annual totals, daily rainfall patterns, diurnal cycle). WRF simulations largely overestimate the annual totals, especially at low spatial resolution, while reproducing correctly the diurnal cycle and locating the spots of heavy rainfall more realistically than either the ground-based KED or the Tropical Rainfall Measuring Mission (TRMM) products. The main weakness of kriged products is the production of annual rainfall maxima over the summit rather than on the slopes, mainly due to a lack of in situ data above 3800 ma.s.l. This study also confirms that one limitation of TRMM is its poor performance over ice-covered areas because ice on the ground behaves in a similar way as rain or ice drops in the atmosphere in terms of scattering the microwave energy. While all three products are able to correctly represent the spatial rainfall patterns at the annual scale, it not surprisingly turns out that none of them meets the challenge of representing both accumulated quantities of precipitation and frequency of occurrence at the short timescales (sub-daily and daily) required for glacio-hydrological studies in this region. It is concluded that new methods should be used to merge various rainfall products so as to make the most of their respective strengths

    Climate trends and glacier retreat in the Cordillera Blanca, Peru, revisited

    Get PDF
    The total glacial area of the Cordillera Blanca, Peru, has shrunk by more than 30% in the period of 1930 to the present with a marked glacier retreat also in the recent decades. The aim of this paper is to assess local air temperature and precipitation changes in the Cordillera Blanca and to discuss how these variables could have affected the observed glacier retreat between the 1980s and present. A unique data set from a large number of stations in the region of the Cordillera Blanca shows that after a strong air temperature rise of about 0.31 °C per decade between 1969 and 1998, a slowdown in the warming to about 0.13 °C per decade occurred for the 30 years from 1983 to 2012. Additionally, based on data from a long-term meteorological station, it was found that the freezing line altitude during precipitation days has probably not increased significantly in the last 30 years. We documented a cooling trend for maximum daily air temperatures and an increase in precipitation of about 60 mm/decade since the early 1980s. The strong increase in precipitation in the last 30 years probably did not balance the increase of temperature before the 1980s. It is suggested that recent changes in temperature and precipitation alone may not explain the glacial recession within the thirty years from the early 1980s to 2012. Glaciers in the Cordillera Blanca may be still reacting to the positive air temperature rise before 1980. Especially small and low-lying glaciers are characterised by a serious imbalance and may disappear in the near future

    ICE Thickness Using Ground Penetrating Radar at Znosko Glacier on King George Island

    No full text
    Ground Penetrating Radar (GPR) survey was carried out to estimate the ice thickness and mapping the bedrock topography at Znosko glacier on King George Island, Antarctic Peninsula during 25 th Peruvian Antarctic Expedition (2018). GPR surveying did at 5.2 MHz frequency with a 16 m antenna gap (transmitter and receiver). The mean ice thickness profiles vary from 7 to 123 m across the 350 m profile length. This high-resolution survey also identified a different type of ices and glaciological features which will help in modelling the nature of the glaciers in the future

    Spatio-temporal assessment of WRF, TRMM and in situ precipitation data in a tropical mountain environment (Cordillera Blanca, Peru)

    No full text
    The estimation of precipitation over the broad range of scales of interest for climatologists, meteorologists and hydrologists is challenging at high altitudes of tropical regions, where the spatial variability of precipitation is important while in situ measurements remain scarce largely due to operational constraints. Three different types of rainfall products - ground based (kriging interpolation), satellite derived (TRMM3B42), and atmospheric model outputs (WRF - Weather Research and Forecasting) - are compared for 1 hydrological year in order to retrieve rainfall patterns at timescales ranging from sub-daily to annual over a watershed of approximately 10 000 km(2) in Peru. An ensemble of three different spatial resolutions is considered for the comparison (27, 9 and 3 km), as long as well as a range of timescales (annual totals, daily rainfall patterns, diurnal cycle). WRF simulations largely overestimate the annual totals, especially at low spatial resolution, while reproducing correctly the diurnal cycle and locating the spots of heavy rainfall more realistically than either the ground-based KED or the Tropical Rainfall Measuring Mission (TRMM) products. The main weakness of kriged products is the production of annual rainfall maxima over the summit rather than on the slopes, mainly due to a lack of in situ data above 3800 ma.s.l. This study also confirms that one limitation of TRMM is its poor performance over ice-covered areas because ice on the ground behaves in a similar way as rain or ice drops in the atmosphere in terms of scattering the microwave energy. While all three products are able to correctly represent the spatial rainfall patterns at the annual scale, it not surprisingly turns out that none of them meets the challenge of representing both accumulated quantities of precipitation and frequency of occurrence at the short timescales (sub-daily and daily) required for glacio-hydrological studies in this region. It is concluded that new methods should be used to merge various rainfall products so as to make the most of their respective strengths

    A future of extreme precipitation and droughts in the Peruvian Andes

    Get PDF
    Runoff from glacierised Andean river basins is essential for sustaining the livelihoods of millions of people. By running a high-resolution climate model over the two most glacierised regions of Peru we unravel past climatic trends in precipitation and temperature. Future changes are determined from an ensemble of statistically downscaled global climate models. Projections under the high emissions scenario suggest substantial increases in temperature of 3.6 °C and 4.1 °C in the two regions, accompanied by a 12% precipitation increase by the late 21st century. Crucially, significant increases in precipitation extremes (around 75% for total precipitation on very wet days) occur together with an intensification of meteorological droughts caused by increased evapotranspiration. Despite higher precipitation, glacier mass losses are enhanced under both the highest emission and stabilization emission scenarios. Our modelling provides a new projection of combined and contrasting risks, in a region already experiencing rapid environmental change

    Involving local communities for effective citizen science: determining game species' reproductive status to assess hunting effects in tropical forests

    No full text
    These three datasets are related to the analyses conducted in the article "Involving local communities for effective citizen science: determining game species' reproductive status to assess hunting effects in tropical forests". The first dataset (1_Archive_Interviews_Pregnancy_Diagnoses_Final) consists of interviews through which diagnoses of reproductive status of lowland paca (Cuniculus paca) were performed by local people in the Amazon. The second dataset (2_Archive_Hunting_Registers_Pregnancy_Immatures) consists of all records of pacas hunted voluntarily collected by local people over a 17-years citizen science project in one of the study sites. The third dataset (3_Archive_Hunting_Registers_CPUE) consists of data on the catch-per-unit-effort of lowland paca hunting events in the same site over 17 years. Specific explanations of columns' attributes are presented in the sheet "Explanations" within each dataset. The study areas and the coordinates related to the dataset are: Amanã Sustainable Development Reserve: -64.538 W; -2,492 S Yavarí-Mirín River:-71,958 W; - 4,357 S Juruá River: -67,659 W; -5,517
    corecore