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The total glacial area of the Cordillera Blanca, Peru, has shrunk by more than 30% in the period of 1930 to the
present with a marked glacier retreat also in the recent decades. The aim of this paper is to assess local air tem-
perature and precipitation changes in the Cordillera Blanca and to discuss how these variables could have affect-
ed the observed glacier retreat between the 1980s and present. A unique data set from a large number of stations
in the region of the Cordillera Blanca shows that after a strong air temperature rise of about 0.31 °C per decade
between 1969 and 1998, a slowdown in the warming to about 0.13 °C per decade occurred for the 30 years
from 1983 to 2012. Additionally, based on data from a long-term meteorological station, it was found that the
freezing line altitude during precipitation days has probably not increased significantly in the last 30 years. We
documented a cooling trend for maximum daily air temperatures and an increase in precipitation of about
60 mm/decade since the early 1980s. The strong increase in precipitation in the last 30 years probably did not
balance the increase of temperature before the 1980s. It is suggested that recent changes in temperature and
precipitation alone may not explain the glacial recession within the thirty years from the early 1980s to 2012.
Glaciers in the Cordillera Blanca may be still reacting to the positive air temperature rise before 1980. Especially
small and low-lying glaciers are characterised by a serious imbalance and may disappear in the near future.

1. Introduction

The tropical Andes - and especially the Cordillera Blanca (CB) - have
been recognized as a region highly vulnerable to climate change and the
related glacier recession (e.g. Bury et al., 2010; Mark et al., 2010;
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Deutsch, 2012). Glaciers in this region act as a temporal water storage
for precipitation falling as snow at high elevations in the wet season
from about October to April. The stored water is partly released during
the dry season, compensating for the lack of water due to scarce precip-
itation events between May and September (Kaser et al., 2003). The dis-
charge from the glaciated catchments is used in the downstream
settlements particularly for mining, agriculture, domestic consumption
and hydropower (Vuille et al., 2008a). The disappearance of these natu-
ral reservoirs has a dominant impact on the water availability in the Rio
Santa valley particularly during the dry season (Juen et al., 2007; Baraer
et al,, 2012). As outlined by Deutsch (2012), rural communities and
poor urban neighbourhoods in the Santa watershed, which drains the
western part of the CB, face a threat of losing access to clean water, ad-
equate to meet their basic domestic and livelihood needs. It is therefore
indispensable to understand the response of glaciers to a changing cli-
mate in order to develop and implement related adaptation measures.

This study focuses on climatic trends and related glacier
changes in the CB in the Peruvian Andes. Glaciers in the tropical
Andes have witnessed a strong retreat during the last decades
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(e.g. Kaser et al., 1990; Hastenrath and Ames, 1995; Kaser and
Georges, 1997; Georges, 2004; Mark and Seltzer, 2005; Silverio
and Jaquet, 2005; Raup et al., 2007; Vuille et al., 2008a; Rabatel
et al., 2013; Salzmann et al., 2013). Small glaciers in the tropical
Andes at low altitudes show a more pronounced retreat, as the cur-
rent equilibrium line altitude (ELA) climbed up towards the upper
reaches causing a reduction or even loss of the accumulation area
(Rabatel et al., 2013).

Several studies focusing on climate trends in the tropical Andes and
the CB have been published. Based on a large number of stations along
the tropical Andes between 1°N and 23°S, Vuille and Bradley (2000)
and later Vuille et al. (2008a) observed a significant warming of approx-
imately 0.1 °C per decade between 1939 and 2006. They included sta-
tion data from the network maintained by SENAMHI, however, they
did not analyse temperature and precipitation trends for the region of
the CB specifically. For the area of the CB, Mark and Seltzer (2005) re-
ported a temperature increase of 0.39 °C per decade between 1951
and 1999 and 0.26 °C per decade between 1962 and 1999. They used
data from the SENAMHI network from 29 and 45 stations for tempera-
ture and precipitation respectively, until 1998. They used temperature
data to compute a trend for two time periods (1951-1999 and
1962-1999) and did not consider 30-year running trends as in the pres-
ent work.

Precipitation changes are more difficult to document than tempera-
ture trends because of missing station records (Rabatel et al.,, 2013). In
southern Peru and the Bolivian Altiplano, precipitation has decreased
in the period 1950 to 1994, while station data indicate a slight increase
for northern Peru for the same period (Vuille et al., 2003). Since precip-
itation is characterised by a large spatial variability, no clear pattern of
increasing or decreasing precipitation can be found on a regional scale
for the tropical Andes (Vuille et al., 2003). The understanding of local
trends in meteorological variables is crucial to examine the glacier re-
treat in the CB. Therefore, trends of precipitation and air temperature
in the CB are identified based on an extensive and unique in-situ data
base. It is assessed how these local trends differ from general trends
along the tropical Andes as published in e.g. Vuille et al. (2003) or
Rabatel et al. (2013). The results are related to existing studies about lin-
ear temperature change in the CB such as from e.g. Mark and Seltzer
(2005) and it is assessed how running 30-year trends varied in time.

The main objectives of this study can be summarized as follows: (i)
Assessing recent trends in precipitation and near-surface as well as
500 hPa air temperature in the CB based on extensive in-situ measure-
ments and reanalysis data with a focus on differences to the general
trends in the tropical Andes. Additionally, it is examined how the run-
ning 30-year linear trends have changed in time since the 1960s and
meteorological variables are compared to the upper-air zonal wind
component during the austral summer and the Pacific Decadal Oscilla-
tion (PDO). (ii) Applying a novel approach to assess the increase in
the freezing line altitude during precipitation days and to estimate the
amount of precipitation needed to balance such an increase. (iii)
Analysing the relation of precipitation and air temperature trends to ob-
served glacier change using available mass balance measurements.

2. Study area

The CB is located between approximately 8°S and 10°S in the
Ancash Region of Peru (Fig. 1), spanning roughly 180 km in length
and 20 km in width. The highest peak in this mountain range is the
southern summit of the glaciated Nevado Huascaran with an eleva-
tion of 6768 masl. Although the distance to the Pacific Ocean is
only about 100 km and more than 4000 km to the Atlantic, this
range marks the continental divide. The Rio Santa drains the western
part of the CB, flows to the northwest into the Pacific and separates
the CB from the Cordillera Negra in the west, which reaches altitudes
of about 5200 masl. The western foothills of the Cordillera Negra
descend to the Pacific coast.

The study site lies in the outer tropical zone and exhibits a typical
climate for this region with a pronounced seasonality mainly in pre-
cipitation, cloud cover and specific humidity. The pronounced dry
season spans from May to September, while the wet season is dom-
inant in austral summer (Kaser and Georges, 1997). About 70 to
80% of the total annual precipitation falls within the pronounced
wet season (Kaser et al., 1990). The seasonal distribution of precipi-
tation is caused by the onset and demise of the South American
monsoon system (Garreaud et al., 2009). During the wet season, pre-
cipitation mainly results from easterly winds transporting moisture
from the Amazon Basin (Garreaud et al., 2003). During the dry
months, precipitation in the valley bottom is almost zero, as plotted
in Fig. 2a. Precipitation at high elevations in the CB is more abundant.
In contrast to the strong differences in seasonal precipitation, the
area is characterised by small seasonal temperature variability
(Fig. 2b). Air temperature shows stronger diurnal than seasonal var-
iability. The diurnal variability is higher in the dry season due to the
lower humidity and cloud cover.

The mountain range of the CB is the largest glacierized area in the
tropics, containing about one quarter of all tropical glaciers (Kaser and
Osmaston, 2002). Several studies about glacier retreat in the CB have
been published and they show consistently that total glacier area dimin-
ished heavily since 1930, as compiled in Fig. 3. For 2003, Racoviteanu
et al. (2008) document an area of 596.6 km? + 21 km?, whereas in
1930 the glacierized area was still around 800 to 850 km? (Georges,
2004).

3. Data
3.1. Meteorological station data

Station data were provided by the National Meteorological and Hy-
drological Service of Peru (SENAMHI), which maintains a national net-
work of climate stations. The network consists of over 100 stations in
the Ancash and the surrounding regions of which several are located
in the CB. Additional daily time series are available from a network of
six stations maintained by the Glaciology and Water Resources Unit
(UGRH) of the National Water Authority (ANA) in Huaraz. The latter
time series are available only since early 2000, which is too short of a pe-
riod to compute climatically meaningful trends. However, this set pro-
vides important and unique information about air temperature in the
last decade at high altitudes of more than 4000 masl. Mean monthly
precipitation data are used from the network of Electropert S.A. to cal-
culate vertical precipitation gradients.

The available variables are daily mean, minimum and maximum
temperature and total daily precipitation. Some stations also provide
other variables like dew point, relative humidity, air pressure, wind
speed and direction. Due to the large uncertainty associated with the
data, these variables have not been considered in the present study.
The data are available through a data portal, originally developed in
the framework of the Swiss-Peruvian initiative for Climate Change Ad-
aptation in Cusco and Apurimac (Programa de Adaptacién al Cambio
Climatico en el Perd, PACC) from the Swiss Agency for Development
and Cooperation (SDC), as described in Schwarb et al. (2011). For the
present study, the data portal has been modified and contains also
data of the CB now.

Fig. 1 shows the locations of the available stations and Table 1 pro-
vides the details. The three highlighted stations Recuay, Artesoncocha
and Buena Vista in Fig. 1 were used to reconstruct reference stations.
For the trend analyses in this work, the area is separated into two
zones: Coast and Cordillera. The coastal region is defined for elevations
up to 400 masl. For the Cordillera Region, only stations with a high cor-
relation to the final reference station are considered. The lowest station
with temperature data is Huari (3025 masl) and the lowest with precip-
itation data is Pampa Libre (1960 masl).
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Fig. 1. Map of the glaciers in the Cordillera Blanca and the location of the here considered meteorological stations measuring temperature (red triangle) and precipitation (blue circle).
Stations used as reference stations are marked with yellow stars. Stations with labels were used as base stations, due to relatively long and complete time series.

3.2. Reanalysis data from NCEP/NCAR and ERA-Interim

Three of the most widely used reanalysis products are the ones
from the National Centers for Environmental Prediction and the Nation-
al Center for Atmospheric Research (NCEP/NCAR) and from the
European Centre for Medium-Range Weather Forecasts (ECMWF), de-
scribed briefly in Table 2. Here, air temperature of the 500 hPa pressure
level is used to derive trends of air temperature over the tropical Andes.
The pressure level at 500 hPa corresponds to an average elevation range
of about 5865 masl. The aim is to depict significant seasonal trends in air
temperature between 1979 and 2012 at high elevations and to embed
the results from station data into a larger framework of temperature
changes along the tropical Andes. Additionally, zonal wind data were
used from both ERA-Interim and NCEP/NCAR at the 250 hPa level for a
2.5° x 2.5° grid box (7.5 to 10°S and 75° to 77.5°W).

3.3. Present and historical glacier data

There are several field measurements of mass balance and estima-
tions of ELAs used here to discuss the current state of glaciers in the
CB. (i) The Glaciology and Water Resources Unit (UGRH) conducts
mass balance measurements on Artesonraju and Yanamarey glaciers.
For the hydrological year 2011 to 2012, they derived an actual ELA of
4975 masl for Artesonraju, and 4915 masl for Yanamarey (Davila,
2013). (ii) Gurgiser et al. (2013) published field measurements from
Shallap glacier. They document an actual ELA of 4985 masl for the

season 2006/07 with a specific mass balance of —0.32 m w.e. and an ac-
tual accumulation area ratio (AAR) of 0.70. For 2007/08, they observed
an actual ELA of 4953 masl with a specific mass balance of 0.56 m w.e.
and an actual AAR of 0.74. Consequently, mass balance is zero when
the steady state AAR is approximately 0.72 with a steady state ELA of
4973 masl. (iii) Mass balance data from Yanamarey and Artesonraju
glaciers for the period 2005 to 2010 were made available by the
World Glacier Monitoring Service (WGMS) (WGMS, 2012). (iv)
Rabatel et al. (2012) documented ELAs of Artesonraju for each year be-
tween 2000 and 2010.

4. Methods
4.1. Quality check and homogenisation of climate data for trend analyses

In order to characterise spatial patterns of running 30-year temper-
ature and precipitation trends, we analysed a large data set from sta-
tions along the Ancash coast and the mountainous region of the CB.
Some of the stations from SENAMHI are operating since the early
1960s, but due to political and economic reasons, observations have
been frequently interrupted or even shut down at times. This is why
most records have gaps of different duration and some do not operate
all the way to the present. Other stations have been in operation for
the past 10 to 20 years.

In addition to missing data, there are other limitations of which one
should be aware. Common limitations are inhomogeneities which may
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Fig. 2. Monthly precipitation and air temperature in the Cordillera Blanca. (a) Multi-
annual monthly mean precipitation registered at Caraz in the valley bottom (grey) and
near Laguna Pardn at over 4000 masl (black) between 1953 and 1995. (b) Multi-annual
monthly mean of daily maximum, minimum and mean temperature for the station Recuay
at 3444 masl for the period 1980 to 2011.

result from changes in a station's geographic location, instruments, av-
eraging techniques or observers. A reliable climatic trend analysis, how-
ever, requires long and homogeneous data series (e.g. Begert et al.,
2005) and respective data treatment prior to trend analyses is needed.
The main aim of a homogenization is to identify and adjust implausible
patterns, erroneous values or breaks caused by non-climatic factors, in
order to create datasets suitable for climate change analyses.

As a first step, the available data series were checked regarding im-
plausible values. A comparison with neighbouring stations shows
whether outliers or breaks are plausible or not. Values classified as evi-
dently erroneous are then deleted from the data series. For a climate
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Fig. 3. Total glacier area and uncertainty ranges for glaciers in the Cordillera Blanca
between 1930 and 2003, compiled based on Georges (2004), Silverio and Jaquet (2005),
Racoviteanu et al. (2008) and ANA (2010).

change analysis of a region, air temperature and precipitation data of a
complete and homogeneous long-term reference station are needed.
However, in the CB and the time period from about 1960 to 2012,
there is no homogeneous and complete time series available which
could be utilized directly as reference station. To overcome this limita-
tion, ensembles/clusters of available station series are used to substitute
for one single reference station. This procedure is described in e.g.
Schwarb et al. (2011) or Salzmann et al. (2013). We created temporally
complete temperature time series for a reference station in every zone
(Cordillera region, the Cordillera region above 4000 masl and the
coast) using a number of data series available. The following steps de-
scribe the approach applied here, relying on data homogenization and
correction, with the aim of deriving one reference station for every re-
gion with an enhanced data quality.

« Relatively long and homogeneous data series were selected, which are
henceforth referred to as “base stations”: Laredo, Paramonga and
Buena Vista for the coast; Recuay, Oyon and San Rafael for the Cordil-
lera; Artesoncocha for the Cordillera zone above 4000 masl (See
Fig. 1).

 Next, the correlation between these base stations and each station in
the zone was computed based on daily values for maximum and min-
imum air temperatures. Only stations with a high correlation
(R? > 0.6) to the base station were used in these further steps. Addi-
tionally, the pairs of station data were inspected visually and the
Craddock test (Craddock, 1979) was applied in order to find inhomo-
geneous patterns between pairs of stations.

* Then, linear regressions were calculated between the measured max-
imum and minimum air temperature of the base station and each of
the selected stations from the former step. Every linear regression is
defined by a slope m and an intersect q.

 These linear regressions were used to create a new time series for
maximum and minimum air temperature for each base station
Thasesim as follows:

1
= HZ?:I (Ti.meas -m; + Qi) (‘1)

Tbase.sim

with Tpase sim being the simulated temperature of every base sta-
tion, n is the number of stations with a high correlation (R? > 0.6)
to the base station, m and q defining the linear regression between
the base station and the selected stations in the zone. Fig. 5 shows
the new substituted time series for the three base stations for the
Cordillera region and the Cordillera region above 4000 masl.
Finally, one reference station was selected for each zone. The final
reference stations are Buena Vista for the coast and Recuay for the
Cordillera region. These stations are highlighted in Fig. 1. As de-
scribed before, the linear regression between the reference station
and every base station was computed on a daily basis. The time se-
ries of the final reference stations was derived using linear regres-
sion with the base stations as predictors, corresponding to the
former steps and Eq. (1).

In addition to creating a reference station of temperature data, a rep-
resentative time series of precipitation for the Cordillera region was also
derived based on the Recuay station with a cluster of 18 base stations
(Fig. 1) using a monthly time step. In contrast to the approach for air
temperature, only gaps of missing precipitation data of base stations
are filled:

1 .
EZ?:] (Pi.meas Sm; + qi> Pbuse,meas =ntL (2)

P basesim —
Pbase‘meas =20

base,meas

with Ppgsesim being the simulated precipitation of every base station, n is
the number of stations with a high correlation (R*>>0.8) to the base
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Table 1

List of all stations used as “base stations” in the analysis with the respective zone, altitude, variables, measuring period and data gaps. A gap in annual precipitation appears here where
precipitation data are missing for at least one day. A gap in annual temperature appears where more than 10% of the daily data are missing. Asterisks indicate stations used as a basis

for reference stations.

Station Name Zone Altitude (masl) Variables Period Gaps (years missing)

Recuay * CB 3532 Tmax 1965-2010 1971/72, 1974-78, 2000/01, 2005/06
Tmin 1966-2012 1970-72, 1974-78, 1980, 1986/87, 1991, 2005/06, 2011

Oyon B 3676 Tmax 1964-2012 1983-1986, 1997, 2004-07, 2011
Tmin 1964-2012 1983-86, 1992-94, 2006/07, 2011

San Rafael CB 3060 Tmax 1966-2012 1974-81, 1983-89, 1991-93
Tmin 1966-2012 1974, 1983-89, 1991-94

Buena Vista * Coast 216 Tmax 1967-2012 1970, 2011
Tmin 1967-2012 1970, 2011

Laredo Coast 253 Tmax 1965-2002 1978/79, 1985-87, 1989
Tmin 1965-2002 1978, 1985-87

Paramonga Coast 120 Tmax 1971-2007 1972,1974,1978-84, 2004/05
Tmin 1971-2007 1972, 1974, 1978-1984, 2004/05

Artesoncocha * CB >4000 masl 4838 Tmean 2002-2011 only 2004 and 2006 are complete

Andajes CB 2725 P 1964-2012 11

Cachicadan CB 2890 P 1964-2010 12

Cajatambo CB 3325 P 1968-2012 23

Chacchan CB 2285 P 1964-2012 9

Chiquian CB 3382 P 1965-2012 29

Cotaparaco CB 3170 P 1964-2009 13

Jacas Chico CB 3673 P 1975-2012 1

Julcan CB 3460 P 1965-2012 13

Mollepata CB 2580 P 1964-2010 10

Ocros CB 3179 P 1965-2012 7

Oyon CB 3676 P 1968-2012 27

Paccho CB 3110 P 1966-2010 7

Pampa libre CB 1960 P 1976-2012 13

Parquin CB 3590 P 1970-2009 10

Picoy CB 3075 P 1982-2012 10

Pira CB 3625 P 1965-2009 13

Recuay * CB 3444 P 1965-2010 19

Sihuas CB 3375 P 1965-2012 29

station, m and q defining the linear regression between the base station
and the selected stations in the zone.

Running 30-year trends of air temperature were computed for the
reference stations applying linear regressions. Seasonal trends were
computed for the standard 3-monthly means (DJF, MAM, ]JJA, SON).
The commonly used Mann-Kendall trend test is applied with a signifi-
cance level of 0.05 to assess the significance of trends.

The transition from snow to rain during precipitation events is close-
ly related to air temperature. The precipitation partitioning is crucial for
the glacier surface albedo and the net shortwave radiation budget.
Therefore, it is important to know how air temperature changed during
precipitation events. As a novel approach, we here computed the
change in freezing level for precipitation days. The analysis was based
on station data from Recuay — the only station that provides long-
term daily air temperature and precipitation records. The freezing
level height for precipitation days is computed by extrapolating air tem-
perature from Recuay, using a constant temperature lapse rate. Addi-
tional precipitation and air temperature records for 10 years from two
high-elevation stations (Yanamarey, 4698 masl and Querococha,
4087 masl) are used to derive a lapse rate of —0.80 °C/100 m (standard
deviation: 0.11 °C/100 m) for precipitation days at all three stations.
This lapse rate corresponds to the one suggested by Carey et al.
(2012), based on stations between around 3000 and 5000 masl. The

lapse rate represents a mean daily lapse rate for days with precipitation.
On average, precipitation occurs during 5 h (standard deviation: 3.2 h)
on precipitation days. The lapse rate is therefore rather high for a
moist adiabatic lapse rate and may lead to an underestimation of the
freezing line altitude. However, the gradient does not influence the rel-
ative change in time of the freezing line.

The CB is an orographic barrier between the humid Amazon basin
and the extremely dry Peruvian coastal region (Kaser et al., 2003).
Precipitation over the CB mainly results from an easterly advection
of moist air masses from the Amazon Basin and locally induced con-
vective cells (Kaser and Georges, 1997). In order to understand how
precipitation is linked to the large-scale circulation, the role of zonal
flow in the interannual variability of precipitation is documented.
Therefore, austral summer (DJF) precipitation is compared to the
upper-air zonal wind component at 250 hPa, used as an index for
advection of moist air masses from the interior of the continent.
The actual advection of humidity, however, does not occur at that
level. These winds only serve to entrain easterly momentum through
downward mixing — the actual moisture influx occurs through near
surface level upslope flow.

Additionally, the annual precipitation and air temperature is com-
pared to the Pacific Decadal Oscillation (PDO, Mantua and Hare,
2002). The PDO index is provided by National Oceanic and Atmospheric

Table 2
Details of the three reanalysis products.
Name Spatial coverage Pressure levels Temporal coverage Institution Citation
NCEP/NCAR 2.5° 17 1948 to present National Centers for Environmental Prediction (NCEP) and National Kalnay et al. (1996)
Center for Atmospheric Research (NCAR)
ERA-Interim 1.5° 37 1979 to present European Centre for Medium-Range Weather Forecasts (ECMWEF) Dee et al. (2011)
ERA-40 2.5° 23 1957 to 2002 European Centre for Medium-Range Weather Forecasts (ECMWF) Uppala et al. (2005)
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Administration (NOAA) web-site and compared to annual precipitation
and temperature data at the reference station Recuay.

4.2. Glacier characteristics

Glacier characteristics and glacier—climate-interactions are discussed
based mainly on two approaches. First, a simple experiment is conduct-
ed with the aim to estimate the amount of precipitation needed to bal-
ance an increase in the snowline altitude during precipitation events.
Second, available mass balance measurements and ELA estimations on
two glaciers are compiled and compared to the glacier hypsography, in
order to discuss the glacier imbalance.

In the first approach, a simple numerical experiment is applied to
Shallap glacier. The aim is to estimate the amount of precipitation need-
ed to balance an observed rise in the snowline during precipitation
events. The sensitivity of the glacier mass balance to albedo changes is
estimated similar to Klok and Oerlemans (2004). The main assumption
of this experiment is that the elevation of the snowline has increased
and the elevation band between the former and the current snowline
has changed from snow-covered to bare ice. Due to the much lower al-
bedo of a bare ice surface of the elevation band, the outgoing shortwave
radiation is smaller and, consequently, more energy is available for ab-
lation. The estimations are based on data from Gurgiser et al. (2013)
and the glacier hypsography from the year 2003. Seasonal mean values
of energy fluxes and surface are utilized, assuming that all fluxes (ex-
cept for outgoing shortwave radiation) are constant and the fraction
of sublimation to total ablation is 12.5% and 75% for the wet and dry sea-
son, respectively (Winkler et al., 2009).

For the second approach we used the glacier hypsography at differ-
ent stages which delivers information on the area distribution across el-
evation. The hypsography measured at different points of time indicates
the rate of area lost within different elevation bands. The hypsography is
derived using glacier boundary outlines combined with an Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER)
Global Digital Elevation Map (GDEM) at a resolution of 30 m (released
in October 2011). Outlines from 2003, based on Satellite Pour
I'Observation de la Terre (SPOT) images, are freely available through
Global Land and Ice Measurements from Space (GLIMS) glacier data-
base (Racoviteanu et al., 2008). The contemporary positions have
been drawn visually based on the high-resolution SPOT images from
2011 and 2012, available through GoogleEarth.

The accumulation area ratio (AAR) describes the ratio of the accu-
mulation to the total glacier area. It is assumed that this ratio is constant
for different glacier extents, given that the glacier is in equilibrium
(Kerschner, 1990; Kaser and Osmaston, 2002b). Here, we distinguish
between the actual AAR of an unbalanced glacier and the theoretical
steady state AAR for a glacier in equilibrium. Different values for AAR
in the CB are given in the literature: A steady state AAR of 0.82 is sug-
gested by Kaser and Osmaston (2002) and Kaser and Georges (1997)
estimated a steady state AAR of 0.75. The steady state ELA is here de-
fined as the altitude of the equilibrium line, assuming a steady state
AAR ranging from 0.75 to 0.82. Under certain conditions, a mean ELA
of a stationary glacier can be determined by the application of an AAR
to the hypsographic curve (Kerschner, 1990). This hypothetical steady
state ELA corresponds to glacier mass conservation. The steady state
ELA is compared to estimations of actual ELAs derived by mass balance
measurements in the field. If the steady state ELA lies below the actual
ELA, the glacier is unbalanced and it is assumed that the glacier will re-
treat until the theoretical and the actual ELA coincide.

5. Results
5.1. Temperature and precipitation changes

Temperature changes are analysed by calculating 30-year running
mean changes for maximum, minimum and mean air temperature

(Fig. 4). Significant trends are highlighted in Fig. 4 according to the
Mann-Kendall test at the 0.05 level based on annual mean air tempera-
ture. Our results show that there is a notable difference between air
temperature trends for the CB and the coast. In the Cordillera region,
the running 30-year mean annual air temperature increase has slowed
down during the recent decades from a maximum of significant
0.31 °C/decade in the period 1969 to 1998 to significant 0.13 °C/decade
in the past thirty years from 1983 to 2012 (Fig. 4a). In this period,
the minimum temperature has increased significantly by almost
0.29 °C/decade, while maximum temperature has cooled insignificantly
by about —0.04 °C/decade. Accordingly, the daily temperature range
(DTR) has decreased over the period 1974-2003. In contrast to the de-
celerated but still increasing daily mean air temperatures in the Cordil-
lera, a general cooling of air temperature at coastal stations is observed
for the 30-year period of 1983 to 2012 of — 0.22 °C per decade (Fig. 4c).
The negative trend is found for minimum and maximum daily temper-
atures, however, only the maximum temperature is decreasing signifi-
cantly. For stations above 4000 masl, air temperature was “stagnant”
between 2002 and 2012 (Fig. 5). The temperature decrease is not signif-
icant with a trend of —0.04 °C for this decade. Fig. 5 shows the annual
times series of the four reference stations for the CB (San Rafael, Recuay,
Oyon and Artesoncocha) and the final reference station Recuay.

Running 30-year air temperature trends for seasonal values were
computed for both Cordillera and coastal stations between the 1960s
and 2012. For air temperature in the CB, the highest increase was
found for minimum temperatures during the dry season JJA and in the
transition season SON (Fig. 4b). Also for the coastal stations, minimum
air temperature is increasing for these two seasons JJA and SON
(Fig. 4d).

In order to compare the trends in the CB to the general trends of the
tropical Andes, we computed seasonal trends of 500 hPa temperature
for the period 1979-2012 based on reanalysis data. Fig. 6 shows season-
al trends over the tropical Andes, based on ERA-Interim and NCEP/
NCAR data. For both ERA-Interim and NCEP/NCAR the strongest
warming is found for the season JJA over the Andes at around 20°S.
The warming trends are strong and significant over the southern
Andes in almost all seasons in both reanalysis products. In contrast,
over the tropical Andes between approximately 10°N and 10°S (north-
ern Peru, Ecuador, Colombia), temperatures tend to decrease. However,
the cooling trends in the north are weak and less significant. The CB is
located within the transition zone between the areas displaying a signif-
icant warming trend over southern Peru and Bolivia and the regions
showing a slight cooling over northern Peru. Despite the generally sim-
ilar patterns of air temperature trends, there are large regional differ-
ences between ERA-Interim and NCEP/NCAR reanalysis data,
particularly for the study site. ERA-Interim data show negative trends
for all seasons for the cell of the CB, however the trend is not significant.
In contrast to this, NCEP/NCAR reanalysis data show a warming for the
grid cell of the CB. The 500 hPa temperature is increasing significantly
by more than 0.2 °C per decade for the austral winter and spring be-
tween 1979 and 2012.

Fig. 7 illustrates the standardized mean annual air temperature from
the reference station Recuay, the mean annual 500 hPa air temperature
from NCEP/NCAR reanalysis and the average of mean annual 500 hPa air
temperature from ERA-40 and ERA-Interim for the grid cell of the CB.
NCEP/NCAR air temperature increases by 0.16 °C per decade in the peri-
od from 1983 to 2012. In contrast, ERA-Interim temperature does not
change significantly in the same period. The observed recent near-
surface air temperature trends of about 0.13 °C per decade are more
consistent with NCEP/NCAR reanalysis data than ERA-Interim.

Fig. 8 highlights that 1993 was characterised by a large annual pre-
cipitation total. After this event, mean decadal precipitation remained
at a higher level than before 1993. The increase of precipitation for the
reference station Recuay is about 60 mmy/decade for the 30 years be-
tween 1983 and 2012. Fig. 9 shows boxplots of decadal means of annual
and seasonal precipitation for a set of eight stations in the CB in order to
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Fig. 4. Running 30-year air temperature trends between 1964 and 2012 for the reference station Recuay in the CB and between 1960 and 2012 for the reference station Buena Vista at the
coast for (a) and (c) annual maximum, mean and minimum air temperature; (b) and (d) seasonal maximum and minimum temperature. Black crosses in (a) and (c) indicate significant

30-year trends at the 5% level (according to the Mann-Kendall test) based on annual data.

show the range of precipitation among different stations. Between the
decade of the 1980s and 1990s, the increase in annual precipitation
was more than 200 mm and is observed by all stations. The shift in pre-
cipitation affects annual values and all seasons, except for the dry season
JJA where precipitation is decreasing. For the dry season, the decade
1993 to 2002 — including the wet year 1993 was even the driest decade
of the entire observation period.

In Fig. 10, the standardized zonal wind at 250 hPa and the standard-
ized precipitation for the month DJF exhibit a clear negative relationship
between 1980 and 2012. Stronger (lower) easterly winds are related to
wetter (drier) rainy seasons. A shift is identified towards larger
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Fig. 5. Mean annual air temperature for the base stations San Rafael, Recuay and Oyon, the
reference station Recuay and the reference station Artesoncocha.

precipitation and a stronger easterly wind component after 1993.
Hence, this shift to larger precipitation may be influenced by a change
in the upper tropospheric wind patterns. The correlation between the
seasonal precipitation and seasonal zonal wind is relatively low with co-
efficients of determination of R? = 0.23 and R? = 0.28, for reanalysis
data from NCEP/NCAR and ERA-Interim, respectively.

Annual precipitation at the reference station Recuay is not correlated
with the Pacific Decadal Oscillation (PDO), with R> = 0.05. The correla-
tion between the PDO and mean annual air temperature is approxi-
mately 0.5 for the 30-year period between the 1960s and 1990s. Then
the correlation decreases and is below 0.1 for the 30-year period from
the late 1970s to the late 2000s.

An increase in the freezing line altitude during precipitation days
of about 160 m is observed between the two decades 1964/72
and 1983/92 based on meteorological data from Recuay station
(Fig. 11).In contrast to this strong increase, the height of the freezing
level for precipitation days has not changed significantly in the last
2 decades.

5.2. Glaciers states

Fig. 12 shows the hypsography for 2003 and 2011 of two glaciers
with mass balance measurements available: a relatively small, low ele-
vation glacier (Yanamarey) and a relatively large glacier with elevations
extending up to about 5900 masl (Artesonraju). There is a distinct areal
retreat of Yanamarey characterised by areal losses on the front, but also
on the lateral edges until the upper reaches of the glacier. The percent of
area lost is much lower for Artesonraju glacier, where areal retreat is ob-
served essentially along the tongue. Vertical lines indicate measured
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Fig. 6. Trends in air temperature between 1979 and 2012 at the 500 hPa level from (left) ERA-Interim and (right) NCEP/NCAR reanalysis data for DJF, MAM, JJA and SON. Black crosses
indicate statistically significant trends (according to the Mann-Kendall test at the 0.05 level). The grid representing the CB is marked with a black box.

6. Discussion
6.1. Climatic trend

Temperature records from numerous stations in the CB show a re-
duced warming in the last 30 years as compared to earlier decades.
The trends computed for the 30-year period before 1999 are consistent
with the results by Mark and Seltzer (2005). They observed a slightly re-
duced warming for 29 stations in the CB in an analysis of temperature
trends in the period 1962 to 1999 as compared to the earlier period
1951 to 1999, which agrees with the reduced warming until 2012 ob-
served here. Despite the reduced warming trends, the temperature is
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Fig. 8. Annual precipitation for the reconstructed final reference station Recuay at
3444 masl. The decades are marked by black lines.
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Ocros, Oyon, Paccho, Parquin, Picoy, Pira).

still increasing at a rate of approximately 0.13 °C per decade during the
last three decades.

In contrast to the reduced warming observed in the CB, an actual
cooling was observed in the last 30 years for coastal stations of the
Ancash region. This is consistent with results from Falvey and
Garreaud (2009) and Jacques-Coper (2009) who similarly observed a
decreasing air temperature trend after the 1970s along the west coast
of Chile and southern Peru, respectively. These studies linked the
cooling along the west coast of South America with the intensification
of the Southeast Pacific Anticyclone (SEPA), and thus an enhancement
of the Humboldt Current System, after the abrupt weakening of this sys-
tem in mid 1970s. This previous SEPA weakening seems to have played
a major role in the climate shift registered as sudden warming in sea
surface temperature in the Southeastern Pacific and in surface air
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Fig. 10. Standardized DJF precipitation for the reference station Recuay and standardized
DJF zonal wind from NCEP/NCAR and ERA-Interim between 1980 and 2012 for the
250 hPa level. Horizontal lines indicate mean values for the two periods 1980-1992 and
1993-2012. Note that scale on left-side y-axis is reversed. Positive (negative) zonal
wind means westerly (easterly) winds.

temperature in many stations across South America (Giese et al.,
2002; Jacques-Coper, 2009).

The rise in temperature in the CB is the result of daily minimum tem-
perature increasing at a larger rate than the decreasing daily maximum,
which is equivalent to a decrease in the daily temperature range (DTR).
The decrease in DTR is apparent after 1974 (analysing 30-year periods)
at both Cordillera and coastal stations and may indicate an increase in
specific humidity or cloud cover, as corroborated by Vuille et al.
(2003) who found a significant increase in relative humidity for the pe-
riod 1950 to 1995 along the Andean range. Additionally, Salzmann et al.
(2013) reported a significant increasing trend in specific humidity in the
southern Peruvian Altiplano over the past 50 years based on reanalysis
data from NCEP/NCAR. Further research would be needed to understand
more in-depth the trends in humidity and cloud cover over the tropical
Andes.

Our data based on meteorological stations show that mean annual
precipitation has strongly increased between the 1980s and 1990s.
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Fig. 11. Boxplots of freezing level height for days with precipitation. Each boxplot consists
of a set of daily values. The 0°-level height was extrapolated based on daily air temperature
data from Recuay (original time series) for days with registered precipitation. The temper-
ature lapse rate is assumed to be —0.8 °C/100 m.
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The increase in precipitation has also been observed by Vuille et al.
(2003) for northern Peru between 5°S and 11°S (1950 to 1994 ). Howev-
er, for general precipitation changes in the tropical Andes no clear
pattern emerges (e.g. Vuille et al., 2003; Rabatel et al., 2013). A decreas-
ing trend is observed, for example, over the Vilcanota region in the pe-
riod 1965-2009 (Salzmann et al.,, 2013) and for southern Peru in the
period 1950-1994 (Vuille et al., 2003). Fig. 10 indicates that the austral
summer precipitation (about 40% of the total annual precipitation) is
correlated with the zonal wind flow. The shift in strength of the zonal
wind towards stronger easterly winds coincides with the increase of
precipitation after 1993. With the increase of zonal easterly flow, advec-
tion of moist air from the Amazon basin is favoured. Consequently, the
variability of zonal wind explains partly the inter-annual fluctuations
of precipitation in the CB since around 1980. The mechanism between
ENSO years and mass balance of glaciers in the CB has been discussed
previously (Vuille et al., 2008b). Changes in the upper-tropospheric
zonal flow are associated with ENSO-related tropical Pacific SST
(Vuille et al., 2008b). This mechanism is inducing westerly (El Nifio)
or easterly (La Nifia) wind anomalies with reduced (El Nifio) or en-
hanced (La Nifia) moisture flux from the east, producing anomalously
dry or wet conditions, respectively. This teleconnection mechanism is
spatially incoherent and affects the CB in most, but not all years. Inter-
annual variability of the seasonal-mean zonal wind is more pronounced
and relevant for the variance of summertime convection over the Alti-
plano (Garreaud and Aceituno, 2001).

Results show that annual precipitation in the CB has a low correla-
tion with the PDO. The relatively high correlation between air tempera-
ture and PDO for the 30-year period before about 1995 indicates a
teleconnection. However, in the recent two decades, this correlation
was very low. The increase in temperature in the late 1970s is correlated
with the shift in the PDO and consistent with the well-known 1976 cli-
mate regime shift (e.g. Giese et al., 2002). This circulation shift clearly af-
fects the observed 30-year air temperature trends.

The freezing level height during days with precipitation is estimated
based on station data from Recuay at 3444 masl. An increase in the
freezing level height of about 130 m is found between the two decades
1964/72 and 1973/82, but no significant increase in the freezing line
occurred after about 1983, which is at odds with many other studies
that have noted a clear and significant increase of the 0 °C-isotherm
(e.g. Bradley et al., 2009 or Rabatel et al., 2013). Bradley et al. (2009)
found that over the 30 years between about 1979 and 2009, freezing
level heights across the Tropics have risen by about 45 m on average.
More recently, Rabatel et al. (2013) calculated an increase of the freez-
ing line of 28.9 m per decade over the CB for the period 1955-2011

based on NCEP/NCAR reanalysis data. However, our results cannot be
directly compared to the findings by Bradley et al. (2009) or Rabatel
et al. (2013), since we only considered days with precipitation and
our analysis is based on an extrapolation of only one station (Recuay).
More work on this topic may be warranted to analyse whether these
discrepancies are due to a regional anomaly or problems with the
Recuay data.

6.2. Glacier retreat

Despite the slowdown of the temperature rise and an increase in
precipitation, glacier retreat has continued at a high rate over the last
30 years. Here, it is discussed how the observed trends of meteorologi-
cal variables may affect the glacier mass balance through changes in ac-
cumulation or ablation processes. In a second step, the glacier imbalance
is discussed and differences in glacier retreat between large and small
glaciers are highlighted.

Both, precipitation and temperature changes may affect the accumu-
lation process. The precipitation increase observed during the wet and
transition seasons SON, DJF and MAM would lead to an increase of
solid precipitation in the accumulation area and thus, a more positive
(or less negative) annual mass balance if precipitation is falling as
snow. Vuille et al. (2008b) e.g. found that on interannual timescales,
precipitation variability appears to be the main driver for glacier mass
balance fluctuations in the CB. On the other hand, increasing air temper-
atures during precipitation events lead to a rise of the snowline. Howev-
er, the increase of air temperature in the last 30 years is particularly
dominant in the relatively dry seasons JJA and SON (Fig. 4), where pre-
cipitation events are rather scarce. Additionally, the freezing level
height during precipitation days has probably not increased significant-
ly since the early 80s, as shown by data from Recuay station.

The ablation process of a glacier is controlled by the energy balance
at the glacier surface. Since incoming shortwave radiation is the domi-
nant energy source all over the year (e.g. Sicart et al., 2008; Gurgiser
et al.,, 2013), glacier melt in the tropics depends to a large degree on
the surface albedo (Rabatel et al., 2013) and the sensitivity of glaciers
to albedo changes is high. The glacier surface albedo is largely influ-
enced by the state of aggregation of precipitation (and ice surface hav-
ing a much lower albedo compared to a snow surface), and the
transition of snow to rain is closely related to air temperature. From
the 1960s to the 1980s, the freezing line altitude - and thus the
snowline altitude - during precipitation events increased. Consequent-
ly, net radiation absorption was higher where the glacier was snow-free
and more energy was available for melt. If we assume an albedo of 0.2
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for ice and 0.75 for snow (taken from Gurgiser et al., 2013) under con-
stant conditions, about 3.2 times more energy from net shortwave radi-
ance is available for the ablation process of an ice surface. The height of
the freezing line during precipitation events is therefore crucial for the
ablation process.

Additionally, higher air temperatures may lead to an increased sen-
sible heat flux, which also results in increased ablation. However, the
sensible heat flux is generally small compared to the energy supplied
by shortwave and longwave radiation (Wagnon et al., 1999; Sicart
et al., 2010; Gurgiser et al., 2013). An unknown remains the role of hu-
midity and cloud cover. The decreased daily temperature range may in-
dicate higher humidity and cloud cover in the last decades (as observed
e.g. by Salzmann et al., 2013 for the Cordillera Vilcanota). An increase in
cloud cover would result in lowered incoming shortwave and increased
incoming longwave radiation (Sicart et al., 2010). Specific humidity, on
the other hand, is crucial in the process of latent heat fluxes, since it de-
termines the fraction of sublimation. In the CB, sublimation consumes
60 to 90% of the total available energy during the dry season (Sicart
et al., 2005; Winkler et al., 2009). Since sublimation of ice needs 8.5
times more energy than melt, a decrease in the fraction of sublimation
may lead to drastically increased ablation rates. As an example, a de-
creasing fraction of sublimation from 75% to 50% on a clear sky day in
July would theoretically almost double total ablation.

Our results show that precipitation has increased significantly
between the 1980s and 2012, which would lead to a more positive
(or less negative) mass balance if precipitation is falling as snow. Addi-
tionally, while the freezing line altitude during precipitation days in-
creased before the 1980s it did probably not increase significantly
during the past 30 years. Glaciers have continued retreating since the
1980s which may be a contradiction at first sight. In order to get addi-
tional insights, a simple numerical experiment, described in the
Methods section is conducted based on energy flux data from Gurgiser
et al. (2013). Based on the available data, the increase of precipitation
over the accumulation area of Shallap glacier is estimated, which
would be needed to balance the increase in ablation in the elevation
band between the former and the current freezing line altitude due to
a decrease of albedo. The needed increase in annual precipitation was
found to be 240 mm and 530 mm for data from 2007/08 and 2006/07,
respectively. The total observed increase in precipitation of about
140 mm between 1964 and 2012 for the reference station Recuay
would thus not compensate the increase of the snowline before about
1980. At Cahuish station at an elevation of 4550 masl, annual precipita-
tion is about 30% higher than at Recuay station at about 3400 masl. As-
suming that the precipitation increase is proportional to the annual
precipitation, the increase would be about 180 mm between 1964 and
2012 at an elevation of about 4500 masl and still not enough to balance
the increased ablation due to the shift in the snowline. This example
based on Shallap glacier is very simple and the sensitivity of glaciers
to changes in temperature and precipitation depends on several factors.
For example, glaciers with a large accumulation area are more sensitive
to changes in precipitation and would benefit more from an increase
(Klok and Oerlemans, 2004).

In a second step, we focus on the glacier hypsography and mass bal-
ance measurements, which allows comparing actual ELAs to theoretical
steady state ELAs and discussing if glaciers are unbalanced. The decrease
in glacier area (in percent of the total area) is particularly high for small,
low-lying and isolated glaciers like Yanamarey and Pastoruri. A certain
shift of the ELA (as a result of a combination of climatic parameters in-
volved, Kaser, 1995) has a much stronger effect on the AAR of a small
glacier than the one of a large glacier (Paul et al., 2007), which makes
small glaciers more sensitive to climate change (e.g. Rabatel et al.,
2013). In other words, a shift in the ELA would lead to a much higher
percentage of area lost for small glaciers than for large ones, but the
total area lost might be larger for large glaciers. We found that actual
measured ELAs of Artesonraju - a relatively large glacier - mostly lie
within the range of estimated steady state ELAs. Probably, the actual
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ELA is still above the steady state ELA, but the rate of area retreat com-
pared to the total area is much lower than for small glaciers. On the
other hand, the actual ELAs of the low-elevation and small Yanamarey
glacier are high compared to the estimated range of theoretical steady
state ELAs. These small, low lying glaciers are thus probably strongly un-
balanced and are going to shrink further and at a high rate in the next
decades even if temperature was stagnant. These findings are in line
with a recent study that reports different retreat scenarios for small gla-
ciers with maximum elevations below 5400 masl and large glaciers with
maximum elevation above 5400 masl (Racoviteanu et al., 2008; Rabatel
etal., 2013). Rabatel et al. (2013) also showed that the annual mass bal-
ance of large glaciers ranges between negative (—2 m w.e. per year) to
positive mass balance. Also Gurgiser et al. (2013) observed a positive
mass balance on Shallap glacier in 2007/08. In contrast to this, small gla-
ciers experienced a permanently negative mass balance, indicating their
strongly unbalanced condition.

Temperature and precipitation changes since the 1980s may proba-
bly not completely explain the strong glacier retreat during the past
30 years. Here, we suggest that the recent glacier retreat may still
occur in response to the strong temperature rise of more than 0.3 °C
per decade before 1980, especially in the 1970s. To further discuss the
response of glaciers in the CB to a changing climate in the last decades,
it is necessary to estimate the response time, a measure for the time
taken for a glacier to adjust the its geometry to a new climate regime.
Until now, little is known about the response times of CB glaciers
(Kaser and Georges, 1997). A simple method for determining the re-
sponse time of glaciers was developed by Jéhanneson et al. (1989)
and applied e.g. in Hoelzle et al. (2003), based on maximum ice thick-
ness at the equilibrium line and annual ablation at the glacier tongue.
Generally, glaciers with low ice thickness at the equilibrium line and
large annual ablation at the glacier tongue have smaller response
times to climate perturbations than large glaciers. Measurements and
estimates of ice thickness and annual ablation rates exist for some gla-
ciers in the CB (e.g. Artesonraju) and allow estimating a response time
on the order of 10 to 40 years. Hence, the strong glacier retreat observed
over the past three decades may include a signal of the temperature in-
crease before the 1980s, depending on the glacier. The moderate tem-
perature rise over the past 30 years may have induced additional
forcing. However, the interpretation of glacier responses to climatic
forcing is challenging, since some climatic fluctuations happen at time
scales shorter than reaction times and, consequently, the observed re-
sponse of a glacier can be a reaction to a large number of overlapping
causes (Kaser and Osmaston, 2002). In order to discuss more in-depth
the response of glaciers in the CB to changes in meteorological variables
in the last three decades, a more detailed assessment of factors such as
ice dynamics or response time of glaciers of different characteristics like
size, slope or orientation would be needed.

7. Conclusions

Here we presented air temperature and precipitation trends since
the 1960s based on reanalysis and station data of a relatively dense sta-
tion network in the region of the CB. The main aim was to identify
changes in temperature and precipitation patterns and to relate these
changes to the glacier retreat during the last 30 years until 2012. We
summarize as follows:

« Air temperature trends are characterized by large regional differences.
A slowdown in temperature increase was identified for the CB, as was
a cooling of air temperature for the coast. These findings are in line
with recent studies. Climate warming may be spatially heterogeneous
and temporally discontinuous. The increase may rather take the form
of step changes where periods of strong warming alternate with
“stagnant” periods.

Reanalysis data were compared to in-situ air temperature data ac-
quired from regional networks of climate stations. The present study
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underlines that global climate products (NCEP/NCAR and ERA-Interim
reanalysis data) may have limitations to analyse regional trends in air
temperature and need careful evaluation.
Precipitation has increased in the CB with a clear shift observed in the
early 1990s. The increase in wet season precipitation is correlated
with the strengthening of the upper-tropospheric easterly zonal
wind component. The shift in precipitation can probably not balance
the negative mass balance caused by a strong increase in air tempera-
ture and the related change in freezing- and snowline, which is ob-
served before approximately 1990.
The observed decrease in the daily temperature range may indicate an
increase in specific humidity or cloud cover. This finding is in line with
recent studies, however, reliable station data are missing and the ef-
fect of increasing humidity and cloud cover remains a missing piece
to fully understand the interactions between climate and glacier re-
treat in the CB. Detailed and long-term field measurements are need-
ed to assess how humidity changes influence the radiation budget and
turbulent latent heat fluxes.

« The freezing line altitude during precipitation days has increased by
about 160 m between the 1960s and the 1980s, based on data of
Recuay station. Our analysis does not show significant change after
this period. The large increase before 1980 probably caused a signifi-
cant shift in the ELA, since ablation is governed by net shortwave radi-
ation via surface albedo.

» We suggest that the strong glacier shrinkage in the CB during the last
30 years may result from the strongly unbalanced glacier states in re-
lation with changes in meteorological variables that occurred in large
part before 1980. Especially small and low-elevation glaciers are ex-
tremely sensitive to climate change and may disappear in the near
future.

If the already scarce water resources of the poor population of the
Santa valley further diminish, water conflicts could exacerbate dramat-
ically in the near future. Consequently, adaptation measures for CB's
population should be planned, incorporating the knowledge of cli-
mate-glacier interactions in order to properly estimate possible advan-
tages and changes but also disadvantages and risks of the respective
options.
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