843 research outputs found

    Water Activities and Osmotic Coefficients of Aqueous Solutions of Five Alkyl-Aminium Sulfates and Their Mixtures with H2SO4 at 25 oC

    Get PDF
    Alkylaminium sulfates are frequently detected in ambient aerosols, and are believed to be important in the nucleation of new particles in the atmosphere, despite their comparatively low gas phase concentrations. In this study water activities and osmotic coefficients have been measured, using a chilled mirror dew point technique, of aqueous mixtures of sulfuric acid and the following alkylaminium sulfates: methylaminium, ethylaminium, dimethylaminium, diethylaminium and trimethylaminium sulfate. The solutions were prepared by mixing solutions of the five corresponding amines and aqueous sulfuric acid and determining the exact aminium to sulfate molar ratios by ion chromatography. The results were correlated using an extended Zdanovskii-Stokes-Robinson equation to enable concentration/water activity relationships to be calculated over the entire composition range from pure aqueous sulfuric acid to pure aqueous aminium sulfates. Comparisons with water activities of ammonium sulfate/sulfuric acid mixtures showed very similar behavior for cation:sulfate ratios of 1:1 (the bisulfate salts) and lower, but that osmotic coefficients for the 2:1 ratio (the aminium sulfates) were much greater than for ammonium sulfate. These results differ from those obtained in another recent study (S. L. Clegg, C. Qiu, and R. Zhang [2013] Atmos. Environ. 73:145–158). The relative values of the osmotic coefficients, in concentrated solutions, suggest that the numbers of methyl or ethyl groups in the aminium ion may have a stronger lowering effect on water activity than the alkyl chain length

    Governance architectures for inter-organisational R&D collaboration

    Get PDF
    Inter-organizational relationships are becoming an increasingly important source of competitive advantage and innovation. This study looks at these relationships in the context of inter-organizational R&D collaborations in the European automotive industry. Previous work led to the proposal of a competence-based portfolio framework that explains the design of the inter-organizational architecture and an indicative relationship strategy. This framework comprises four distinct types of governance architecture and relationship strategy. This paper reports on the first confirmatory transfer study, conducted at Jaguar Land Rover, in the UK. The study illustrates developmental paths and patterns in the evolution of inter-organizational relationships using empirical insights. Their configuration and dynamic evolution is contingent upon the ‘engageability’ of the partner companies’ competences based on their attractiveness, transferability and maturity. The study shows that the contingency framework is transferable and practically useful, as well as yielding further practical narrative about inter-organizational practice

    Governing inter-organisational R&D supplier collaborations:a study at Jaguar Land Rover

    Get PDF
    This article discusses the importance of collaboration with suppliers and partners during research and development (R&D) technology projects. It details how this can be accomplished using the collaborative enterprise governance (CEG) concept to manage a technology project. CEG is based on the premise that parts of companies work with parts of other companies, which are reconfigured on dynamic bases according to a variety of different internal and external factors. This article presents an overview of the founding literature, the CEG and its methodology, and examples based at Jaguar Land Rover in the UK. CEG has been used here to explain why some technology projects have succeeded while others have done less well. This article concludes by offering new propositions, inducted through grounded theory, relating to the successful management of R&D projects, which should be picked up by future research studies in the area

    Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles

    Get PDF
    Atmospheric sulfate aerosols have important impacts on air quality, climate, and human and ecosystem health. However, current air-quality models generally underestimate the rate of conversion of sulfur dioxide (SO2) to sulfate during severe haze pollution events, indicating that our understanding of sulfate formation chemistry is incomplete. This may arise because the air-quality models rely upon kinetics studies of SO2 oxidation conducted in dilute aqueous solutions, and not at the high solute strengths of atmospheric aerosol particles. Here, we utilize an aerosol flow reactor to perform direct investigation on the kinetics of aqueous oxidation of dissolved SO2 by hydrogen peroxide (H2O2) using pH-buffered, submicrometer, deliquesced aerosol particles at relative humidity of 73 to 90%. We find that the high solute strength of the aerosol particles significantly enhances the sulfate formation rate for the H2O2 oxidation pathway compared to the dilute solution. By taking these effects into account, our results indicate that the oxidation of SO2 by H2O2 in the liquid water present in atmospheric aerosol particles can contribute to the missing sulfate source during severe haze episodes

    Transcriptome‐Wide Analysis of Messenger RNA Decay in Normal and Osteoarthritic Human Articular Chondrocytes

    Get PDF
    Objective Messenger RNA (mRNA) decay rates control not only gene expression levels, but also responsiveness to altered transcriptional input. We undertook this study to examine transcriptome‐wide posttranscriptional regulation in both normal and osteoarthritic (OA) human articular chondrocytes. Methods Human articular chondrocytes were isolated from normal or OA tissue. Equine articular chondrocytes were isolated from young or old horses at a commercial abattoir. RNA decay was measured across the transcriptome in human cells by microarray analysis following an actinomycin D chase. Messenger RNA levels in samples were confirmed using quantitative reverse transcription–polymerase chain reaction. Results Examination of total mRNA expression levels demonstrated significant differences in the expression of transcripts between normal and OA chondrocytes. Interestingly, almost no difference was observed in total mRNA expression between chondrocytes from intact OA cartilage and those from fibrillated OA cartilage. Decay analysis revealed a set of rapidly turned over transcripts associated with transcriptional control and programmed cell death that were common to all chondrocytes and contained binding sites for abundant cartilage microRNAs. Many transcripts exhibited altered mRNA half‐lives in human OA chondrocytes compared to normal cells. Specific transcripts whose decay rates were altered were generally less stable in these pathologic cells. Examination of selected genes in chondrocytes from young and old healthy horses did not identify any change in mRNA turnover. Conclusion This is the first investigation into the “posttranscriptome” of the chondrocyte. It identifies a set of short‐lived chondrocyte mRNAs likely to be highly responsive to altered transcriptional input as well as mRNAs whose decay rates are affected in OA chondrocytes

    Taking one for the team : Partisan alignment and planning outcomes in England

    Get PDF
    Does partisan alignment affect sub-national political units’ performance? When testing for a partisan alignment effect local authority planning processes represent a ‘hard case’, given procedural insulation against politicisation, and a disjuncture between national party commitments to expand house-building versus pressure on local councillors from residents opposing new developments. I find that, in general, partisan alignment brings an increased propensity to approve large residential planning applications. This suggests councillors’ willingness to ‘take one for the team’ by prioritising national over local interests. Consistent with ‘party politics of housing’ insights, inter-party variation sees an altered effect in left-wing constellations, which display lowered approval propensities. In addition to these substantive extensions to scholarship on partisan alignment effects, the insights presented into the drivers of variation in local authority planning outcomes contribute to the pressing tasks of understanding and addressing the chronic under-supply of new housing within the English housing system

    Hygroscopic properties of aminium sulfate aerosols

    Get PDF
    Alkylaminium sulfates originate from the neutralisation reaction between short-chained amines and sulfuric acid and have been detected in atmospheric aerosol particles. Their physicochemical behaviour is less well characterised than their inorganic equivalent, ammonium sulfate, even though they play a role in atmospheric processes such as the nucleation and growth of new particles and cloud droplet formation. In this work, a comparative evaporation kinetics experimental technique using a cylindrical electrodynamic balance is applied to determine the hygroscopic properties of six short-chained alkylaminium sulfates, specifically mono-, di-, and tri-methylaminium sulfate and mono-, di-, and tri-ethyl aminium sulfate. This approach allows for the retrieval of a water-activity-dependent growth curve in less than 10 s, avoiding the uncertainties that can arise from the volatilisation of semi-volatile components. Measurements are made on particles > 5 µm in radius, avoiding the need to correct equilibrium measurements for droplet-surface curvature with assumed values of the droplet-surface tension. Variations in equilibrium solution droplet composition with varying water activity are reported over the range 0.5 to > 0.98, along with accurate parameterisations of solution density and refractive index. The uncertainties in water activities associated with the hygroscopicity measurements are typically  0.9 and  ∼  ±1 % below 0.9, with maximum uncertainties in diameter growth factors of ±0.7 %. Comparison with previously reported measurements show deviation across the entire water activity range

    Accurate Measurements of Aerosol Hygroscopic Growth over a Wide Range in Relative Humidity

    Get PDF
    Using a comparative evaporation kinetics approach, we describe a new and accurate method for determining the equilibrium hygroscopic growth of aerosol droplets. The time-evolving size of an aqueous droplet, as it evaporates to a steady size and composition that is in equilibrium with the gas phase relative humidity, is used to determine the time-dependent mass flux of water, yielding information on the vapor pressure of water above the droplet surface at every instant in time. Accurate characterization of the gas phase relative humidity is provided from a control measurement of the evaporation profile of a droplet of know equilibrium properties, either a pure water droplet or a sodium chloride droplet. In combination, and by comparison with simulations that account for both the heat and mass transport governing the droplet evaporation kinetics, these measurements allow accurate retrieval of the equilibrium properties of the solution droplet (i.e., the variations with water activity in the mass fraction of solute, diameter growth factor, osmotic coefficient or number of water molecules per solute molecule). Hygroscopicity measurements can be made over a wide range in water activity (from >0.99 to, in principle, 0.9 and ∼±1% below 80% RH, and maximum uncertainties in diameter growth factor of ±0.7%. For all of the inorganic systems examined, the time-dependent data are consistent with large values of the mass accommodation (or evaporation) coefficient (>0.1)

    Hygroscopic properties of aminium sulfate aerosols

    Get PDF
    Alkylaminium sulfates originate from the neutralisation reaction between short-chained amines and sulfuric acid and have been detected in atmospheric aerosol particles. Their physicochemical behaviour is less well characterised than their inorganic equivalent, ammonium sulfate, even though they play a role in atmospheric processes such as the nucleation and growth of new particles and cloud droplet formation. In this work, a comparative evaporation kinetics experimental technique using a cylindrical electrodynamic balance is applied to determine the hygroscopic properties of six short-chained alkylaminium sulfates, specifically mono-, di-, and tri-methylaminium sulfate and mono-, di-, and tri-ethyl aminium sulfate. This approach allows for the retrieval of a water-activity-dependent growth curve in less than 10 s, avoiding the uncertainties that can arise from the volatilisation of semi-volatile components. Measurements are made on particles > 5 µm in radius, avoiding the need to correct equilibrium measurements for droplet-surface curvature with assumed values of the droplet-surface tension. Variations in equilibrium solution droplet composition with varying water activity are reported over the range 0.5 to > 0.98, along with accurate parameterisations of solution density and refractive index. The uncertainties in water activities associated with the hygroscopicity measurements are typically  0.9 and  ∼  ±1 % below 0.9, with maximum uncertainties in diameter growth factors of ±0.7 %. Comparison with previously reported measurements show deviation across the entire water activity range
    corecore