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Abstract 

Using a comparative evaporation kinetics approach, we describe a new and accurate method for determining 

the equilibrium hygroscopic growth of aerosol droplets. The time-evolving size of an aqueous droplet, as it 

evaporates to a steady size and composition that is in equilibrium with the gas phase relative humidity, is used 

to determine the time-dependent mass flux of water, yielding information on the vapour pressure of water 

above the droplet surface at every instant in time. Accurate characterization of the gas phase relative humidity 

is provided from a control measurement of the evaporation profile of a droplet of know equilibrium properties, 

either a pure water droplet or a sodium chloride droplet. In combination, and by comparison with simulations 

that account for both the heat and mass transport governing the droplet evaporation kinetics, these 

measurements allow accurate retrieval of the equilibrium properties of the solution droplet (i.e. the variations 

with water activity in the mass fraction of solute, diameter growth factor, osmotic coefficient or number of 

water molecules per solute molecule). Hygroscopicity measurements can be made over a wide range in water 

activity (from >0.99 to, in principle, <0.05) on timescales of <10 s for droplets containing involatile or volatile 

solutes. The approach is benchmarked for binary and ternary inorganic solution aerosols with typical 

uncertainties in water activity of <±0.2 % at water activities >0.9 and ~±1 % below 80 % RH, and maximum 

uncertainties in diameter growth factor of ±0.7 %. For all of the inorganic systems examined, the time-

dependent data are consistent with large values of the mass accommodation (or evaporation) coefficient (>0.1).  
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1. INTRODUCTION 

Quantifying the equilibrium hygroscopic growth of aerosol is important for understanding the liquid water 

content and size distributions of atmospheric aerosol and for modelling their optical properties, for predicting 

cloud droplet number and size distribution following the activation of cloud condensation nuclei (CCN), and 

for determining the partitioning of semi-volatile organic compounds (SVOCs) in the condensed aerosol 

phase.1,2 The capacity for aerosols to absorb water can also influence their deposition in the respiratory track 

on inhalation, potentially influencing the impact of aerosols on health.3 The uncertainties in understanding 

these processes provide an incentive to improve the characterisation of aerosol hygroscopicity. As an example, 

cloud parcel models have shown that the cloud droplet number can vary by as much as 50% depending on the 

strength of the assumed hygroscopic growth as saturation is approached.4 

Rigorous thermodynamic models for calculating the hygroscopic response of mixed component aerosol have 

been developed based on bulk phase and aerosol phase measurements of the equilibrium response of binary 

solutions of a single solute and water.5,6 When combined with treatments of solution density and surface 

tension, accurate predictions of the variation in equilibrium particle size with relative humidity are possible.7,8  

To represent the equilibrium properties of solutions containing the myriad of potential organic compounds 

found in the atmosphere, it is often necessary to resort to functional group activity models which require 

consideration of the interactions between electrolytes and organic species.9,10 However, there is also a 

requirement to provide models of hygroscopic growth that are tractable in computational models of 

atmospheric chemistry, radiative transfer and climate models. To achieve this, models such as -Kӧhler theory 

have been developed to represent the hygroscopicity of aerosol particles using a single value of , with a higher 

value representing more hygroscopic aerosol (>0.5 for ammonium sulphate and sodium chloride) and a lower 

value representing less hygroscopic aerosol (<0.05 for insoluble fatty acids).11,12 Measurements of  have been 

made for aerosols varying in complexity from binary component solution aerosol through to the complex 

inorganic-aqueous mixtures found in the atmosphere.13–15 

At a fundamental level, both the thermodynamic factors governing hygroscopic growth and the kinetics of 

condensation must be better quantified in order to represent the aerosol microphysics under-pinning the 

partitioning of water between the gas and particle phases. A number of significant uncertainties must be 

addressed to improve the microphysical description of water partitioning. There can be significant differences 
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between hygroscopic growth measurements made on different instruments.16 Further, estimates of the critical 

supersaturation for CCN activation inferred from values determined from measurements under sub-saturated 

conditions are often inconsistent with values determined directly.16,17 The gas-particle partitioning of volatile  

organic compounds (VOCs) and SVOCs, and co-condensation with water during CCN activation is poorly 

constrained and has been largely ignored, not only effecting predictions of particle growth in the atmosphere 

but introducing ambiguity into measurements of hygroscopic growth.2 Although the molecular complexity of 

secondary organic aerosol (SOA) precludes an accurate treatment of hygroscopic growth that explicitly 

accounts for each compound individually, empirical correlations that seek to exploit dependencies on average 

measures of composition (e.g. the variation of  with O:C ratio) are often poorly defined and, at best, 

appropriate only for specific SOA precursors and environmental conditions.13–15 The slow deliquescence and 

low solubility of some organic components present challenges in interpreting measurements of hygroscopic 

growth.18 Liquid-liquid phase separation into internal mixtures of hydrophobic and hydrophilic phases in 

mixed component aerosol remains a challenge in predicting equilibrium properties.19,20 The extent of the 

depression of surface tension by surface active organic components and the interplay of surface and bulk 

partitioning in determining the critical supersaturation remains difficult to resolve.21,22 Finally, the kinetics of 

water, VOC and SVOC condensation are often poorly determined with few quantitative measurements of the 

mass accommodation coefficients of organic species in particular.23–25  

To address the challenges in quantifying hygroscopicity for aerosols of complex composition, refinements 

in laboratory and field instrumentation, and improved frameworks for representing hygroscopicity, are 

required.26,27 Hygroscopic growth measurements must be made up to water activities close to the dilute limit, 

ideally as high as 0.999. Such high water activities (aw) are required for measurements to be directly relevant 

to CCN activation28 and to place tighter constraints on the equilibrium solution compositions required to 

underpin the development of predictive models.29 Building on our previous preliminary report,32 we present 

here a more general and wide ranging characterisation of a new method for deriving hygroscopic growth curves 

for coarse mode particles over a wide water activity range (in principle from dry conditions to >0.999). We 

concentrate on aerosol droplets of well-known composition and containing well-characterised electrolytes in 

order to benchmark the technique. Growth curve measurements can be determined rapidly and accurately, 

potentially opening up the possibility of mapping hygroscopic response for a large number of organic 



4 

 

components of SOA and, indeed, complex mixtures and SOA samples directly. In Section 2 we review the 

experimental technique and the analyses methods used before presenting measurements of hygroscopic growth 

for binary solutions of sodium chloride, ammonium sulphate, sodium sulphate and sodium nitrate in Section 

3. We also consider the accuracy of the approach by exploring the ability of the instrument to resolve small 

changes in hygroscopic growth for mixed-salt containing aerosol droplets.  

 

2. EXPERIMENTAL 

Comparative kinetics measurements for the quantification of the hygroscopicity of aerosols using the 

cylindrical electrodynamic balance (EDB) experimental setup have been described in previous publications.3 2 –

34 In this section, an overview of the instrument and of the determination of hygroscopic properties from 

measurements on multiple droplets is presented, extending our previous work over a wider range in water 

activity. The adopted treatments for refractive index and density are also introduced. 

 

2.1 The Cylindrical EDB 

The EDB technique allows the levitation of a single charged aerosol droplet inside an electrical field. Single 

droplets are generated on-demand from a solution with known initial concentration by applying a pulse voltage  

to the filled reservoir of a microdispenser (Microfab MJ-ABP-01), placed just outside one of the walls of the 

EDB chamber. In between droplet generation events, a smaller constant pulse voltage is applied to the 

microdispenser in order to continuously flush some solution through its tip, thus assuring that no evaporation 

of solvent and no variation of the solution concentration can occur from measurement to measurement. The 

initial radius of the droplets once trapped varies from about 18 to 25 µm. Before entering the trapping chamber, 

a net charge is imparted to every droplet by means of a high-voltage induction electrode. Within 100 ms of its 

generation, the droplet is tightly confined in the centre of the electrodynamic field inside the EDB chamber. 

An AC signal is applied to the cylindrical electrodes and a DC offset is superimposed, in order to balance the 

gravitational and drag forces on the trapped droplet. The cylindrical configuration of the electrodes results in 

a steep gradient in the potential in the trapping region, guaranteeing a strong confinement of the droplets,35  

with little harmonic oscillation in the position of the particle that is characteristic of other electrode 

configurations. 
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The droplet is confined within a gas flow, which results from the mixing of wet and dry nitrogen flows. It is 

possible to change the ratio between these two flows by means of mass flow controllers (MKS 1179A) and 

this allows the control of the relative humidity (RH) of the gas phase that surrounds the droplet. The 

temperature of the chamber is controlled by recirculating a mixture of water and ethylene glycol (50% v/v)  

from a thermostatic water bath (Julabo, F32-HE) through the lid and the bottom of the chamber. The accessible 

temperature range is -25 to 50 °C. In this study all the measurements were performed at 20 °C.  

The trapped droplet is illuminated by light from a green laser ( = 532 nm). The resulting elastic scattering 

pattern is collected every 10 ms over a range of solid angles centred at 45° by means of a CCD camera and is 

used to determine the radius of the droplet with the simplified geometrical optics approximation approach,36 

using Equation (1): 

 𝑎 =
𝜆

Δθ
(cos(θ 2⁄ ) +

𝑚 𝑠𝑖𝑛 (θ 2⁄ )

√1 + 𝑚2 − 2𝑚 𝑐𝑜𝑠 (θ 2⁄ )
)

−1

 (1) 

where 𝑎 is the droplet radius, 𝜆 is the incident wavelength, θ is the central viewing angle, Δθ is the angular 

separation between the fringes in the scattering pattern and 𝑚 is the refractive index of the droplet. The error 

associated with the radius determination with this approach is ±100 nm. 

The refractive index of the evaporating droplets is not constant because the solute concentration increases 

as water evaporates. This variation of the refractive index with time must be taken into account for an accurate 

determination of the droplet radii. At first, during the data acquisition, 𝑚 is set constant at 1.335, the value for 

pure water at 532 nm. In a post-acquisition analysis step, the radii data are corrected by taking into account the 

variation of the refractive index with mass fraction of solute (mfs) by applying the molar refraction mixing 

rule,37 which has been demonstrated to be the best mixing rule to describe the refractive index for a number of 

inorganic systems.38 The molar refraction (R) of a component i is defined as: 

 𝑅𝑖 =
(𝑚𝑖

2 − 1)𝑀𝑖

(𝑚𝑖
2 + 2)𝜌𝑖

=
(𝑚𝑖

2 − 1)𝑉𝑖

(𝑚𝑖
2 + 2)

 

(2) 

 

where Mi is the compound’s molecular mass and 𝜌𝑖  is its pure melt density. The ratio of molecular mass to 

liquid density is equivalent to the molar volume of pure i, Vi. The molar refraction for the solution, R, is the 
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sum of the molar refractions of each component, including all solutes and water, weighted by their mole 

fractions (𝑥𝑖):  

 

 

𝑅 = ∑ 𝑥𝑖𝑅𝑖

𝑖

 (3) 

In this study, the variation in solution densities with mass fraction of solute and the pure solute melt densities 

are taken from the work of Clegg and Wexler.39 The melt densities are extrapolations from high temperature 

measurements compiled and evaluated by Janz.40 For ease of data processing, the density data are represented 

as a function of the square root of the mass fraction of solute (mfs0.5) and fitted with a polynomial curve (order 

ranging from 4th to 7th) so that the residual from the fit is <0.005 g.cm-3 across the whole mfs range. This density 

dependence is then used to constrain a least-squares fit of  the tabulated data of solution refractive index for 

solute concentrations below the solubility limit,41 to the functional dependence of the molar refraction mixing 

rule. The only fit parameter is the value of the pure component refractive index of the molten salt. From this 

fit, the value of the refractive index of the solution, m, at any solute concentration can then be found from 

Equation (4) by solving for m using the mfs, the estimated density of the solution at this composition , a mole 

fraction weighted molecular mass M, and the estimated molar refraction of the solution. 

𝑅 =
(𝑚2 − 1)𝑀

(𝑚2 + 2)𝜌
 

(4) 

 

The procedure used to take into account the variation in refractive index during the evaporation is the 

following. There is a time-period (~0.1 s) between droplet generation and the first determination of size when 

the droplet is in transit into the trapping region.32,33 Thus, the initial size of the droplet is estimated with a linear 

extrapolation of the a2 vs. time plot to t = 0 s; the initial solute mass fraction and density of solute solution at t 

= 0 s and at this droplet size are known from the prepared solution.33 The elastic light scattering data are first 

analysed with 𝑚 = 1.335 to yield an initial estimate of the variation in radius with time, also providing a first 

estimate of the variation of the solute concentration and of the solution density during the evaporation. A set 

of corrected refractive indices for the droplet solution at every time-step is then calculated based on the change 

in size using the molar refraction mixing rule (Equations 2-4). These corrected refractive indices at each time 
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point are then used to fit a new set of corrected radii with Equation 1. This procedure is repeated for the new 

set of corrected radii until the refractive indices and radii values converge, typically after 2-3 iterations. 

One key feature of this experimental setup is the presence of two microdispensers that can be operated 

sequentially, thus allowing the generation of aerosol droplets with different chemical compositions in rapid 

succession. This feature allows comparative kinetics measurements, which consist of levitating a sequence of 

droplet pairs; one probe droplet (either water or a well-characterised salt solution, such as NaCl), followed by 

one sample droplet containing the solution of interest. Typically, these kind of comparative kinetic 

measurements consist of a series of at least ten pairs of probe and sample droplets. The evaporation kinetics of 

the probe droplets (when water) or their equilibrated size (when aqueous NaCl) are used to determine the gas 

phase RH, which is key information for the interpretation of the evaporation profile of the unknown sample 

droplet, as will be discussed in Sections 2.2 and 2.3.  

 

2.2 Modelling Aerosol Droplet Evaporation Kinetics 

The mass and heat transport equations from Kulmala and coworkers42 can be used to model the evaporation 

and condensation kinetics of water or other volatile species from/to aerosol droplets. For the evaporation case, 

the mass flux from the droplet (𝐼) depends on the concentration gradient of the evaporating species (water in 

this work) from the droplet surface to infinite distance. We have considered the influence of droplet charge on 

evaporation rates in previous work,32 showing it to have negligible impact at the imbalance of positive and 

negative ions induced in the droplets studied in these experiments.44 The mass transfer enhancement resulting 

from the flowing gas surrounding the droplet is accounted for by the inclusion of a Sherwood number (𝑆ℎ) 

scaling of the mass flux.33,43 The thermophysical parameters that appear in the mass flux treatment and their 

uncertainties have been thoroughly discussed in previous publications.32,34,45,46 The resulting expression for the 

mass flux is the following: 

 𝐼 = −2𝑆ℎ𝜋𝑎(𝑆∞ − 𝑎𝑤) [
𝑅𝑇∞

𝑀𝛽𝑀𝐷𝑝0𝑇∞𝐴
+

𝑎𝑤𝐿2𝑀

𝐾𝑅𝛽𝑇𝑇∞
2

]

−1

 

(5) 

 

where 𝑆ℎ is the Sherwood number, 𝑆∞ is the saturation ratio of water in the surrounding gas phase (also 

referred to as RH in this work), 𝑎𝑤 is the water activity in the droplet solution, R is the ideal gas constant, 𝑇∞ 
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is the gas phase temperature, 𝐿 is the latent heat of vaporisation, and 𝑀 is the molar mass of water. 𝛽𝑀 and 𝛽𝑇 

are the transition correction factors for mass and heat respectively; these corrections are very small for the 

coarse mode droplet sizes considered here and this will be demonstrated when we consider the sensitivity of 

the thermodynamic measurement to the value of the mass accommodation coefficient. 𝐷 is the diffusion 

coefficient of water in the gas phase, 𝑝0 is the saturation vapour pressure of water, A is the Stefan flow 

correction and 𝐾 is the thermal conductivity of the gas phase. 

As an example of the data acquired during droplet evaporation, a series of seven (NH4)2SO4 solution droplets 

evaporating into different RHs at 20°C are shown in Figure 1A over the range from 50 % to 85 % RH. The 

initial mass fraction of the starting solution was 0.05 and the initial radii of the seven different droplets varied 

from 23.0 µm to 23.3 µm. The total amount of water that evaporates from each droplet depends on the gas 

phase RH and the final equilibrated radius is such that the aw in the droplet matches the RH in the surrounding 

gas phase. The evaporation rate increases with decreasing RH since the mass flux is proportional to the 

difference between the solution water activity and the RH (Equation (5)). As shown in Figure 1B, the mass 

flux is at its highest value for every droplet at the beginning of the evaporation because 𝑆∞ − 𝑎𝑤 is at its 

maximum. Over time, the evaporation slows down and the mass flux decreases until the droplet is in 

equilibrium with the gas phase and 𝐼 is zero. The evaporation time extends from 5 s at 50% RH to about 25 s 

at 85% RH.  

  

2.3 Aerosol Hygroscopic Growth from Comparative Kinetic Measurements in the EDB 

The mass and heat transport model presented in Section 2.2 is used to compare the evaporation kinetics of 

probe and sample droplets and to estimate aerosol hygroscopic growth curves from data of the form shown in 

Figure 1, as follows. The procedure is described below and also outlined in the Supplementary Information. 

First, the probe droplet evaporation profile is analysed to determine the gas phase RH, which is expressed as a 

percentage throughout this work; note that aw is always represented as a fractional value. The probe droplet 

can be either pure water or a NaCl solution. Davies et al.32 demonstrated the validity of both methods in the 

determination of the RH in this kind of comparative kinetic measurements and also estimated the errors on the 

RH retrieved in both cases. 
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When a pure water droplet is used as a probe, its experimental radius-squared versus time evaporation profile 

is compared to simulated evaporation curves at different RH, calculated using equation (5). The mean squared 

difference (MSD) between the experimental profile and each calculated curve is estimated and the RH 

corresponding to the curve with the lowest MSD is selected. In this case, the lower and upper values of the RH 

come from uncertainties in the thermophysical parameters D (±6%) and K (±2%)46 in Equation (5) and are 

given by:  

 𝑅𝐻 = 𝑅𝐻𝑤−(−0.020 𝑅𝐻𝑤 +0.021)
+(0.169𝑅𝐻𝑤

2−0.364 𝑅𝐻𝑤 +0.194)  
(6) 

 

When a NaCl solution with known initial concentration is used as a probe, the equilibrated size of the droplet 

after water evaporation may be used to determine the water activity in the solution, and therefore the RH in 

the gas phase. In order to do this, the thermodynamic Extended Aerosol Inorganics Model (E-AIM)5,6,47 

(http://www.aim.env.uea.ac.uk/) is used to calculate how water activity and density change with the solution 

composition during evaporation and to predict the equilibrated radius of the droplet after water evaporation 

has ended at a given RH. For the relationship between water activity and NaCl concentration, the model is 

based upon the critical review of Archer,48 and electrodynamic balance measurements of several authors (see 

Table 1 of Clegg et al.49). Densities of aqueous NaCl (up to and including the hypothetical pure liquid salt) 

were calculated using the equations of Clegg and Wexler.39 

The lowest RH value that can be determined with this method is limited by the efflorescence RH of NaCl, 

which is around 48%. If this equilibrated size method is used, the uncertainties in RH arise from the accuracy 

with which the equilibrated radius is known (±100 nm) and the uncertainty in the determination of the initial 

droplet size at t = 0 s ( −100 
+150  nm), which corresponds to an uncertainty of less than 0.8% of the dry radius for 

the droplet sizes considered in this work. In this case, the lower and upper values of the RH are expressed as:  

 𝑅𝐻 = 𝑅𝐻𝑒𝑞
−(−0.0266 𝑅𝐻𝑒𝑞

2+0.0086𝑅𝐻𝑒𝑞 +0.017)

+(−0.0175 𝑅𝐻𝑒𝑞
2−0.0005𝑅𝐻𝑒𝑞 +0.017)

 
(7) 

 

Using a pure water droplet as a probe of RH is preferable as the equilibrated size method includes a further 

uncertainty from the initial NaCl solution concentration. Nevertheless, NaCl was used as a probe for 

measurements at RH < 80% since the associated uncertainties on the RH determined with water as a probe 

http://www.aim.env.uea.ac.uk/
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droplet would be too significant. Uncertainties in the simulation of pure water evaporation become increasingly 

large below this RH  due to uncertainties in the thermophysical parameters D and K and because of the 

approximation that are needed in the expression of the vapour pressure of water at the droplet surface 

(discussed further in Section 3.1).  

According to Equation (6), the RH can be determined with an uncertainty smaller than  −0.3% 
+0.33% 

for RH values 

above 90% when pure water is used as a probe. At 50% RH, the error in % RH associated with the 

determination of RH with the equilibrated size method is  −1.5% 
+1.2% 

, according to Equation (7). Knowing the RH 

with such accuracy is crucial for an accurate application of the kinetics model presented in Section 2.2. The 

uncertainty of commercial RH probes is typically between ±1% and ±3% in the RH range 10-90% and it 

usually dramatically increases for RH values above 90%. Both the methods used in this work to retrieve the 

gas phase RH are associated with smaller uncertainties in the RH determination, especially for measurements 

at high RH. The RH of the gas phase in the EDB trapping chamber is kept constant during the evaporation 

measurements, but slight fluctuations in RH can sometimes be observed. However, the RH is monitored 

frequently with probe droplets during the entire duration of the experiments (5-15 minutes for ten pairs of 

sample and probe droplets, depending on the RH at which the measurements are taken). The magnitude of 

these fluctuations is typically smaller or comparable to the uncertainty associated with the RH determination 

(<0.2-0.3% above 80% RH with water as a probe, <0.5-0.6% below 80% RH with NaCl as a probe). 

Once the gas phase RH is known, Equation (5) can be rearranged and solved for 𝑎𝑤 in order to calculate the 

water activity in the droplet at each point in time during evaporation. The particle radius is measured, 𝑆∞ is 

determined from the probe droplet and the mass flux 𝐼 can be calculated from the collected radius versus time 

plot, while all the other quantities are known. For the calculation of mass flux, the radii data must be converted 

to particle mass values and the density of the droplet is thus needed. The parameterization of density as a 

function of square-rooted mass fraction of solute has been discussed in Section 2.1. The initial solute mfs at t 

= 0 s is known from the prepared solution and the initial droplet density can be determined. Therefore, 

considering the measured variation in volume due to the evaporation of water, the mfs and density for every 

measured point during evaporation can be calculated. Knowing how the mass of the droplet varies in time, the 

mass flux (𝐼 = 𝑑𝑚/𝑑𝑡) can be calculated as the slope of the mass versus time calculated curve and Equation 
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(5) can be used to determine how the aw varies in the droplet with time. Over each time-step, the droplet can 

be considered to be homogeneous in composition; the diffusional mixing time estimated to be 0.01 s for a 

droplet with a radius of 15 μm and assuming a water diffusion coefficient of 2·10-9 m2 s-1. 

In addition, from the measured radii data and knowing the density of the droplet at each instant, radial growth 

factor (GFr) and moles of water per moles of solute (nwater/nsolute) can be calculated for each measured radii 

during the evaporation of the sample droplet. Coupling these last quantities with the information about the 

solution water activity, hygroscopicity curves for the sample compounds can be reported as GFr vs. aw, 

nwater/nsolute vs. aw, and mfs vs. aw. In order to obtain robust hygroscopic data from these comparative kinetics 

measurements, all curves contain data averaged over at least ten sample droplets. To average the 

hygroscopicity data calculated from the evaporation of multiple droplets, all the obtained GFr, nwater/nsolute and 

mfs values are separated into aw bins (0.03-0.005 aw intervals, depending on the RH at which the measurements 

are taken) and the data points attributed to each bin are then averaged. The final averaged curves for each 

compound will be presented in Section 3, unless otherwise specified.   

 

2.4 Materials 

Sodium chloride, ammonium sulphate (both ≥99.5%, Sigma-Aldrich) sodium nitrate and sodium sulphate 

(≥99.5% and ≥99% respectively, Fisher Scientific) solutions were prepared with an initial known mass fraction 

of solute of ~0.05 for all compounds. In order to make measurements at higher initial aw values, solutions with 

an initial known mfs of ~0.005 were also prepared. The gas flow in the EDB chamber was nitrogen (BOC, 

oxygen-free).  

 

3. RESULTS AND DISCUSSION 

3.1 Full Hygroscopicity Curves from Measurements into Different Gas Phase RHs 

In deriving hygroscopic growth relationships from droplet evaporation measurements, we must first consider 

in more detail the accuracy of the framework presented in Section 2.2. The mass transport of water from the 

droplet to the gas phase during evaporation is coupled to heat transfer, with the latent heat of vaporisation 

associated with this phase change removed from the droplet. The heat flux from the droplet is greatest when 

the evaporation rate of water is fastest and, when it is not balanced by the heat flux from the surrounding 
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environment to the droplet, the condensed phase cools down. This temperature depression of the droplet has 

to be considered because the vapour pressure of water at the surface of the droplet is temperature dependent 

and directly influences the evaporation rate. In the derivation of Kulmala and co-workers,42 the dependence of 

the vapour pressure of the evaporating species at the droplet surface (𝑝𝑎) on temperature is calculated from the 

Clausius-Clapeyron equation. The exponential term in this expression is approximated with the first order term 

in a Taylor series expansion: 

 

𝑝𝑎 = 𝑎𝑤𝑝0(𝑇𝑔𝑎𝑠)exp (
𝐿𝑀(𝑇𝑑𝑟𝑜𝑝𝑙𝑒𝑡 − 𝑇𝑔𝑎𝑠)

𝑅𝑇𝑑𝑟𝑜𝑝𝑙𝑒𝑡 𝑇𝑔𝑎𝑠

)

≈ 𝑎𝑤𝑝0(𝑇𝑔𝑎𝑠 ) (1 +
𝐿𝑀(𝑇𝑑𝑟𝑜𝑝𝑙𝑒𝑡 − 𝑇𝑔𝑎𝑠 )

𝑅𝑇𝑑𝑟𝑜𝑝𝑙𝑒𝑡 𝑇𝑔𝑎𝑠

) 

(8) 

 

where 𝑝0(𝑇𝑔𝑎𝑠) is the saturation vapour pressure at the temperature of the gas phase (𝑇𝑔𝑎𝑠) and 𝑇𝑑𝑟𝑜𝑝𝑙𝑒𝑡 is 

the temperature at the droplet surface. 

This approximated expression for the temperature dependence of the vapour pressure of water is only 

accurate when the difference between the droplet and gas phase temperatures is less than ~3°C; beyond this 

threshold value the approximation with the Taylor series expansion results in an underestimation of the value 

of the exponential bigger than 1% at 25°C,42 with a subsequent underestimation of 𝑝𝑎. Consequently, when 

the droplet temperature depression is large the vapour pressure of water at the surface of the droplet is 

increasingly underestimated. Therefore, the only measured points that can be used to reliably calculate the 

water activity in the evaporating sample droplet are those that satisfy this condition. 𝑇𝑑𝑟𝑜𝑝𝑙𝑒𝑡 − 𝑇𝑔𝑎𝑠 can be 

estimated according to Equation (9):42 

 𝑇𝑑𝑟𝑜𝑝𝑙𝑒𝑡 − 𝑇𝑔𝑎𝑠 = −
𝐼𝐿

4𝜋𝛽𝑇𝐾𝑎
 

(9) 

 

Figure 1C shows the time dependence of the calculated 𝑇𝑑𝑟𝑜𝑝𝑙𝑒𝑡 − 𝑇𝑔𝑎𝑠 for the same seven (NH4)2SO4 

droplets as in the two previous panels. The initial temperature depression can reach -7 K in correspondence to 

the fastest evaporation rates (at 50% RH), while for the three droplets evaporating into a higher RH (about 

78%, 81% and 85%, respectively) the calculated temperature depression is always less than 3 K.  
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The effect of the droplet temperature depression on the estimated hygroscopic behaviour of a sample 

compound retrieved from the measurements is shown in Figure 2. Panel A presents the mfs versus aw 

relationship obtained from a dataset of ten (NH4)2SO4 droplets evaporating at 58% RH. A very good agreement 

with the E-AIM model prediction can be observed for low aw values, both for the averaged curve and for all 

the ten single droplets. For higher aw values, which are derived from the measurements of fluxes at early 

evaporation times, the water activity calculated with Equation (5) is overestimated and even assumes 

unrealistic values beyond 1. This arises because the corresponding droplet temperature depression (Figure 2B) 

is larger in magnitude than the -3 K threshold, which is satisfied only below a calculated aw of 0.73. The 

absolute error on the calculation of aw is shown in Figure 2C. This aw error was calculated as the difference 

between the experimental aw calculated with Equation (5) and the water activity calculated with the E-AIM 

model at a certain mfs value. For the averaged data, the absolute errors on the calculated aw are very close to 0 

at aw values below 0.73, while they reach values up to about 0.06 when 𝑇𝑑𝑟𝑜𝑝𝑙𝑒𝑡 − 𝑇𝑔𝑎𝑠 is of the order of -5 to 

-6 K.  

As a consequence of this limitation in the kinetics framework, only a portion of about 0.2 in water activity 

of the mfs curve of a sample compound can be retrieved when measurements are taken into an RH at 50%. As 

a consequence, evaporation measurements into at least three different RHs are need to determine a full curve 

from 0.5 to >0.99 aw. An example of this procedure is shown in Figure 3 for the determination of the 

relationship between aw and mfs for (NH4)2SO4, in which EDB results are compared to the E-AIM model 

prediction (solid black line). Evaporation measurements with a starting solution of ~0.05 mfs were made into 

three different RHs (54%, 74% and 87.3%). A fourth dataset was collected at high RH (90%, more clearly 

visible in the inset in Figure 3) using a solution with lower starting concentration (mfs of 0.005) and therefore 

with a higher starting aw (0.997). In this latter case, just a very small section of the mfs curve can be calculated: 

since the droplet had a very low initial concentration, it was not possible to keep it trapped until its aw 

equilibrated with the surrounding RH, as it undergoes an exceptionally large size change. The open circles 

represent data points averaged over ten droplets and have been considered acceptable only if the difference in 

temperature between the droplet and the gas phase is estimated to be smaller than the 3 K limit. In the 

background, data for all the ten droplets in the same four datasets are shown. All the data points can be accepted 

for the two datasets measured at high RH, with the evaporation sufficiently slow to maintain a low droplet 
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temperature depression, while just small portions of the data measured at 54% and 74% RH can be accepted. 

The agreement with the aw vs mfs curve calculated with the E-AIM model is very good for the points that lie 

within the 3 K threshold for the droplet temperature depression. 

One of the interesting features of the comparative kinetics measurements in the cylindrical EDB is that 

hygroscopic growth curves can be measured up to very high aw values (>0.99). In Figure 4, the very high end 

for the measured GFr, nwater/nsolute and mfs versus water activity plots are shown for (NH4)2SO4, and are 

compared with simulations from the E-AIM model (grey solid lines). In this case, the highest aw reached with 

this averaged dataset is 0.997, corresponding to a GFr value of 6.22 (Figure 4A). For the calculation of the 

radial growth curve, the dry radius of the droplets is calculated from the wet size at t = 0 s, the concentration 

of the starting solution and the density of crystalline ammonium sulphate (1.77 g cm-3)41. In Figure 4B, at aw 

= 0.997 the number of absorbed moles of water per moles of (NH4)2SO4 inferred from the measurements is 

close to 1000 and the agreement between the measured value and the E-AIM model prediction is remarkable. 

If the mfs vs. aw plot is considered (Figure 4C), the lowest measured ammonium sulphate mass fraction is 0.005 

at aw = 0.997. It is also worth noting that not only is it possible to measure growth curves up to  very high water 

activity values with this technique, but also that the accuracy on the calculated aw is highest when the RH at 

which measurements are taken is high (>90%), according to Equations (6) and (7). It should also be stressed 

that the growth curve is retrieved in a matter of seconds, potentially allowing accurate hygroscopic growth 

measurements for droplets containing volatile components, provided their vapour pressure is less than that of 

water 

 

3.2 Accuracy of Measurements 

Hygroscopicity measurements on four well-characterized inorganic-aqueous systems  (NaCl, Na2SO4, 

NaNO3 and (NH4)2SO4) were performed in order to confirm the validity of the method over the range in aw 

from 0.5 to 0.99. The relationships between mfs and aw for each solute are shown in Figure 5, compared with 

the corresponding prediction from the E-AIM model. The level of agreement obtained is excellent for all the 

systems studied. Na2SO4 was observed to crystallize during measurements at aw = 0.57 and therefore it was 

not possible to reach lower water activity values during the experiments. In addition, the systematic over-

predictions of E-AIM between water activities of 0.75 and 0.85 and under-predictions at the lowest aw are 
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consistent with previous observations (see, for example, Figure 3 of Clegg et al.49). It should be noted that the 

measurement for aqueous sodium chloride droplet provides a consistency check of the approach for inferring 

the hygroscopicity from kinetics measurements. For control sodium chloride droplets, measurements of the 

final equilibrated size are used to infer the RH of the gas flow. This value is then used in the retrieval of the 

mfs data from the kinetic measurement at all intermediate non-equilibrated aw values; in combination, this 

allows confirmation of the shape of the mfs vs aw dependence at all intermediate water activities.  

Osmotic coefficients,  , provide a convenient way to characterise the departure of solutes from ideality and 

can be determined from the equation:  

 𝜙 = −
ln (𝑎𝑤)

𝑀𝑤𝑚𝑖𝜐𝑖

 
(10) 

 

where Mw is the molecular weight of water, mi is the molality of the solute i and i is the stoichiometric 

coefficient of solute i. As the water activity tends to unity at zero solute molality, the osmotic coefficient should 

tend to 1 with the expected Debye-Hückel limiting law behaviour. In Figure 6 we report the dependence of the 

osmotic coefficient on solute molality for the four binary systems studied, providing a stringent examination 

of the retrieved hygroscopic behaviour particularly at the dilute solution limit. As expected, the dependence of 

the osmotic coefficient on water activity leads to large uncertainties at low molality, a consequence of the large 

uncertainties in water activity in the early stages of evaporation (high mass flux) of dilute solution droplets. At 

molalities higher than 1 mol kg-1, the close agreement between the measured and modelled osmotic coefficients 

for all systems suggests that the uncertainties attributed to measurements at these molalities are conservative. 

Deviations are typically <0.02 in osmotic coefficient for the (NH4)2SO4, NaNO3 and NaCl systems, comparable 

to previous measurements (see for example, the comparisons of predictions and measurements of osmotic 

coefficients in the work by Clegg et al.47). Larger discrepancies are observed for Na2SO4 at intermediate 

concentrations and these have already been discussed above.  

To better illustrate the agreement between the experimental results and simulations from the E-AIM model, 

Figure 7 provides a comparison between the measured and modelled nwater/nsolute ratios for the four inorganic 

systems,  spanning the range from just 3 water molecules per ion pair up to 1000. For each point in the plot, 

nwater/nsolute was calculated with the E-AIM model at the exact aw value of the experimental data point. For 
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nwater/nsolute values up to about 100 (corresponding to aw of up to about 0.98, depending on the salt), all the 

points lie close to the 1:1 line, thus revealing a very good agreement of the experimental results with the E-

AIM model calculations. For nwater/nsolute > 100, the points appear a little more scattered. This is due to the fact 

that at very high aw values, even a slight variation in water activity results in a significant variation in the 

calculated water moles values, with the hygroscopic growth curve extremely steep in this region. As an 

example, the highest measured data point for (NH4)2SO4 can be considered: the measured aw is 0.997 and it 

corresponds to 799 nwater/nsolute calculated with the E-AIM model; if an uncertainty of ±0.001 in aw is 

considered, the calculated nwater/nsolute values are 585 and 1236 for water activity values of 0.996 and 0.998, 

respectively. In order to show the effect of such a small uncertainty on water activity, in Figure 7 the 

uncertainty on the calculated nwater/nsolute for ammonium sulphate is represented with dark and light grey 

envelopes if an error of ±0.001 and ±0.002 in aw is considered, respectively. These envelopes become 

increasingly large when the amount of absorbed water increases because of the steepness of the hygroscopic 

growth curve in that region. 

 

3.3 Sensitivity to Small Changes in Chemical Composition 

Hygroscopic growth measurements on mixtures of NaCl and (NH4)2SO4 were also taken in order to evaluate 

the sensitivity of the experimental method to small changes in the chemical composition of the aerosol droplets.  

Three different (NH4)2SO4/NaCl mass ratios were considered (50/50, 90/10 and 95/5) and the mfs and GFr vs. 

aw experimental curves (circles) are compared with simulations from the E-AIM model (dashed lines) in Figure 

8. For the calculation of growth factors of these mixtures, the reference dry state is considered to be a solid 

particle made of non-mixed crystalline ammonium sulphate and sodium chloride. The dry density is calculated 

estimating the dry volumes separately for NaCl and (NH4)2SO4 and calculating the ratio between the total mass 

and the total volume of the two dry salts. 

The experimental results show an overall good agreement with the curves predicted by the E-AIM model 

for all three mixtures considered, both for the mfs and for the GFr curves. The obtained mfs vs. aw plot (Figure 

8A) shows that it is possible to successfully characterise the different hygroscopic behaviours of the 90/10 and 

95/5 mixtures up to about aw = 0.93. Above this value, the trends for the 90/10 and 95/5 mixtures become very 

similar: the difference between the two curves is less than 0.01 mfs and discriminating between them is not 
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possible. When the experimental results are plotted as GFr vs. aw (Figure 8B), the predicted curves for the same 

two mass ratios differ by 0.021 in GFr at aw = 0.65 and by 0.058 in GFr at aw = 0.95; in this range, it was 

possible to discriminate between their GFr trends with the EDB measurements. For higher water activity 

values, the hygroscopic growth curve becomes steep and differences between the two trends are not 

discernible. The comparison could not be carried out for the ratio nwater/nsolute because the curves predicted by 

the E-AIM model for the 90/10 and 95/5 mixtures are both essentially indistinguishable from that of 

ammonium sulphate.  

These results show that it is possible with this technique to detect variations in the hygroscopicity of 

solutions with only slight differences in chemical compositions, down to a 5% difference on a mass basis for 

mixtures of NaCl and (NH4)2SO4. In the case of different mixtures, the minimum detectable variation would 

depend on the nature of their components: greater discrimination would be achieved if the individual pure 

components were to much more dissimilar hygroscopic properties.  

 

3.4 Sensitivity to the Value of the Mass Accommodation Coefficient 

The sensitivity of these hygroscopicity measurements to variations in the mass accommodation coefficient 

(αM) was also investigated. The mass accommodation coefficient represents the fraction of water molecules 

that is absorbed in to the droplet bulk on collision with the surface, considered equivalent to the evaporation 

coefficient by the principle of microscopic reversibility. In the literature, measurements of the mass 

accommodation coefficient have been performed with a number of different techniques and resulting in a 

considerable range of different αM values.46,50,51 αM contributes to the mass transition correction factor (βM, 

Equation 5) in the kinetics model used here. Up to this point we have assumed that αM has a value equal to 1, 

in agreement with previous studies which have reported the value of M for water accommodating/evaporation 

from a water surface.23,46,52 Similar to αM, the thermal accommodation coefficient (αT) indicates the efficiency 

with which a colliding water molecule is able to transfer energy to the droplet and is included in the expression 

for βT, the heat transition correction factor. For all the results presented in the previous Sections and for the 

analysis discussed here, αT was maintained constant at 1, in agreement with literature studies on aqueous 

solution droplets,51,53 and the possible effects of its variation have not been investigated. 
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In previous work,34 we have examined the influence of the uncertainty in αM on the evaporation kinetics 

profiles of aqueous solutions. We have shown that the evaporation kinetics measurements for droplets with 

radii larger than 5 μm are insensitive to variations in αM when >0.05 when the uncertainties resulting from the 

remaining thermophysical parameters and the experimental conditions are considered. Here the influence of 

αM on the obtained hygroscopic growth curve of NaCl expressed in terms of nwater/nsolute for NaCl is considered 

over the entire range of RH investigated in this work (from 50% to above 99% RH). In Figure 9, the black 

circles represent the original growth curve calculated with αM = 1, while the grey open circles represent the 

nwater/nsolute for the same evaporating droplets datasets but with the analysis performed assuming αM = 0.1. A 

slight shift in the water activity calculated with Equation 5 can be observed when varying the value of the mass 

accommodation coefficient, especially for aw values above 0.95 where the growth curve becomes very steep. 

Nevertheless, the two curves can be considered to be very similar within the experimental errors. The superior 

agreement of the curve calculated with αM = 1 (black circles) and the prediction from the E-AIM model (black 

solid line) at very high aw, together with the very good results obtained for all the aerosol systems presented in 

Sections 3.2 and 3.3, suggests that assuming a value of αM = 1 most accurately characterises the mass transport 

behaviour observed in the evaporating droplets for all of the binary and ternary systems studied here.  

 

4. CONCLUSIONS 

Using the comparative kinetics technique, we have shown that equilibrium hygroscopic growth 

measurements can be made with typical accuracies in water activity of better than <±0.2 % at water activities 

>0.9 (see, for example, Figure 7) and ~±1 % below 80 % RH. Conventional instruments report growth under 

sub-saturated conditions with accuracies of ±1% in aw below 95% RH and ±0.1% for high humidity 

instruments at >99% RH.14,16,30 In CCN activation measurements, the uncertainty in the critical supersaturation 

value is typically between 30%  at supersaturations between 0.1-1%, equivalent to uncertainties of 0.03 to 0.3 

% at aw>0.99.31 In addition, the largest uncertainties in diameter growth factor from this technique are of order 

~0.7 % (see, for example, the points that have error bars larger than the point size in Figure 8); sub-saturated 

growth measurements by conventional instruments have associated uncertainties of ±5 % with large inter-

instrument variabilities.16,26 Indeed, the hygroscopic growth curves for mixed component aerosol containing 

(NH4)2SO4 / NaCl mass ratios of 90/10 and 95/5 shown in Figure 8 are clearly resolved: the difference between 
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growth factors for these two systems varies from 0.02 at 65 % RH (at growth factors of ~1.34, i.e. a 1.5 % 

difference) up to 0.07 at 98 % RH (at growth factors of ~3.20, i.e. a 2 % difference). Such a small effect would 

unlikely be resolved in conventional instruments.  

The instrument described here has some significant benefits for rapidly surveying the hygroscopic growth 

of laboratory generated aerosols of known composition or, indeed, samples from field measurements. 

Determinations of hygroscopic growth can be made over a wide range in water activity by measuring the time-

dependent profiles of droplets evaporating into a selected sequence of RHs (potentially down to fully dry 

conditions and up to water activities greater than 0.99) with a similar level of accuracy and without particular 

refinement to address specific water activity ranges. The opportunity to measure hygroscopic growth to such 

high water activity should provide an opportunity to address some of the challenges in resolving the 

discrepancies between determinations of from measurements made under sub-saturated and super-saturated 

conditions. An advantage of performing measurements on coarse mode particles (>5 m in diameter) is that 

the Kelvin component of the equilibrium response is negligible when compared with the solute component. 

Thus, the surface curvature component can be ignored, providing the most unambiguous route to accurate 

measurements of the solute effect. In addition, this approach yields growth curves in a few seconds starting 

from the limit of high water activity, particularly valuable for studying organic compounds of low-solubility 

or high volatility by avoiding the complications that follow when changes in the particle-gas partitioning of 

the VOC/SVOC must be considered. Hygroscopic growth measurements can also be made over a wide 

temperature range from <250 to >320 K although we focus on ambient temperatures in this publication. 

Although not appropriate for direct field measurements on accumulation mode particles, the technique can be 

used to characterise samples with volumes of only a few 10’s of microliters, the minimum volume required to 

load the piezoelectric droplet-on-demand generators used to deliver droplets to the electrodynamic balance. 

Benefiting from these advantages, present measurements are underway to provide accurate measurements of 

hygroscopic growth for a wide range of organic components found in ambient aerosol containing disparate 

functional groups and containing multiple functionalities in the same solute molecule. 

 

SUPPORTING INFORMATION  
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Further details of the procedure for the retrieval of hygroscopic growth curves from evaporation profiles are 

available free of charge via the Internet at http://pubs.acs.org. The experimental data presented in the Figures 

are provided through the University of Bristol data repository at Reid, J. P. (2015): DOI: 

10.5523/bris.h8igni7g424s19a8ab3boyjb5. 
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Figure 1. (A) Measured radii (μm) of seven (NH4)2SO4 solution droplets (initial mfs of about 0.05) evaporating 

into different RHs at 20°C. Red to blue curves indicate increasing RH in the gas phase at approximately equally 

spaced intervals in RH, from ~50% (red) to ~85% (blue) RH. The method for determining the RH exactly is 

described in Section 2.3. (B) For the same droplets, the calculated mass flux (ng s-1) from the droplet is plotted 

against time. (C) Variation in time of the difference between the temperature (K) of the droplet surface (Tdroplet) 

and the gas phase (Tgas), calculated according to Equation (9). 
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Figure 2. (A) Mass fraction of solute (mfs) vs. aw plot, calculated from the evaporation kinetics of 10 

(NH4)2SO4
 droplets evaporating in to 58% RH. Symbols: grey dots – data from each individual droplet; black 

dots – averaged curve calculated over the 10 droplet dataset; solid line – mfs vs. aw for (NH4)2SO4
 calculated 

with the E-AIM model. (B) Difference in temperature between the droplet surface and the surrounding gas 

phase as a function of aw, calculated with Equation (9). (C) Absolute error in aw relative to the reference E-

AIM model values. Symbols: grey squares – error on aw from each individual droplet; open black squares - 

error on aw relative to the averaged mfs curve.  
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Figure 3. Retrieval of the full mfs vs. aw curve of ammonium sulphate from measurements into different RHs. 

Symbols: solid line – calculated mfs vs. aw curve from the E-AIM model; filled circles – individual data from 

all  10 droplets in each data set; open circles – averaged data for which the maximum 3 K droplet temperature 

depression condition is satisfied. Colours: red, purple and light blue – droplets of 0.05 mfs starting solution 

evaporating into a gas phase at 54%, 74% and 87.3% RH, respectively; dark blue – 0.005 mfs starting solution 

into a gas phase 90% RH. Note: error bars are smaller than the data point when not shown. 
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Figure 4. GFr, nwater/nsolute and mfs for aw values between 0.88 and 1 for (NH4)2SO4. Symbols: filled circles – 

experimental data points averaged over a minimum of 10 droplets; solid lines – calculated curves from the E-

AIM model. Note: error bars are smaller than the data point when not shown. 
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Figure 5. Measured mfs vs. aw plots for (NH4)2SO4, NaNO3, Na2SO4 and NaCl (panels A-D). Symbols: filled 

circles – experimental data; solid lines – calculation from the E-AIM model. Note: error bars are smaller than 

the data point when not shown. 
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Figure 6. Dependence of osmotic coefficient on molality of solute (mol kg-1) for (NH4)2SO4, NaNO3, Na2SO4 

and NaCl (panels A-D). Symbols: filled circles – experimental data; solid lines – calculation from the E-AIM 

model.  
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Figure 7. Correlation plot showing the experimentally measured and E-AIM predicted values for nwater/nsolute, 

displayed on a logarithmic scale in the main graph and on a linear scale in the inset. Symbols: green - 

(NH4)2SO4; red – NaNO3; blue – Na2SO4; purple – NaCl; solid line – 1:1 correlation line; grey envelopes: 

uncertainty on nwater/nsolute for (NH4)2SO4, corresponding to an error in aw of ±0.001 (dark grey) and 0.002 (light 

grey). 
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Figure 8. mfs vs. aw (Panel A) and GFr vs. aw (Panel B) plots for (NH4)2SO4 and NaCl mixtures at different 

mass ratios, represented in the form (NH4)2SO4/NaCl. Symbols: filled circles – experimental data; solid lines 

– calculations from the E-AIM model for pure (NH4)2SO4 and NaCl; dashed lines – calculations from the E-

AIM model for the mixtures. From top to bottom in (A) (bottom to top in (B)), the lines/symbols are for pure 

NaCl (violet), 50/50 ratio (pink), 90/10 ratio (orange), 95/5 ratio (light green), pure (NH4)2SO4 (dark green). 

Note: error bars are smaller than the data point when not shown. 
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Figure 9. nwater/nsolute vs. aw growth curve on a logarithmic scale for NaCl obtained when two different values 

for the mass accommodation coefficient were used in data processing (Equation 5). Symbols: black circles – 

experimental obtained with αM = 1; open grey circles – experimental obtained with αM = 0.1; solid line – 

prediction from the E-AIM model. 
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