466 research outputs found
Quantitative evaluation of motor function before and after engraftment of dopaminergic neurons in a rat model of Parkinson's disease
Although gait change is considered a useful indicator of severity in animal models of Parkinson's disease, systematic and extensive gait analysis in animal models of neurological deficits is not well established. The CatWalk-assisted automated gait analysis system provides a comprehensive way to assess a number of dynamic and static gait parameters simultaneously. In this study, we used the Catwalk system to investigate changes in gait parameters in adult rats with unilateral 6-OHDA-induced lesions and the rescue effect of dopaminergic neuron transplantation on gait function. Four weeks after 6-OHDA injection, the intensity and maximal area of contact were significantly decreased in the affected paws and the swing speed significantly decreased in all four paws. The relative distance between the hind paws also increased, suggesting that animals with unilateral 6-OHDA-induced lesions required all four paws to compensate for loss of balance function. At 8 weeks post-transplantation, engrafted dopaminergic neurons expressed tyrosine hydroxylase. In addition, the intensity, contact area, and swing speed of the four limbs increased and the distance between the hind paws decreased. Partial recovery of methamphetamine-induced rotational response was also noted
Rough cut tool path planning for B-spline surfaces using convex hull boxes
The objective of this paper is to present a non-uniform layered rough cut plan for B-spline surfaces using convex hull boxes. The tool path plan generated by this method will rapidly remove most redundant material from stock material without overcutting. First, a B-spline surface is decomposed into piecewise Bezier surfaces, of which the convex hull boxes form an approximate model for rough cutting. Then, according to the top planes of those convex hull boxes, the stock material is divided into layers of different thickness. The cavity contour for each layer is obtained using a simplified union Boolean operation on convex hull boxes. Finally, from the top down, each layer is processed like a 2D pocket die cavity. The algorithm is implemented on a personal computer. It is shown that the rough cut plan is very efficient since no computation for solving nonlinear equations is needed, and no overcutting occurs since B-spline surfaces are protected by the convex hull property of Bezier surfaces
Theory of coherent acoustic phonons in InGaN/GaN multi-quantum wells
A microscopic theory for the generation and propagation of coherent LA
phonons in pseudomorphically strained wurzite (0001) InGaN/GaN multi-quantum
well (MQW) p-i-n diodes is presented. The generation of coherent LA phonons is
driven by photoexcitation of electron-hole pairs by an ultrafast Gaussian pump
laser and is treated theoretically using the density matrix formalism. We use
realistic wurzite bandstructures taking valence-band mixing and strain-induced
piezo- electric fields into account. In addition, the many-body Coulomb
ineraction is treated in the screened time-dependent Hartree-Fock
approximation. We find that under typical experimental conditions, our
microscopic theory can be simplified and mapped onto a loaded string problem
which can be easily solved.Comment: 20 pages, 17 figure
The human papillomavirus-18 genome is efficiently targeted by cellular DNA methylation
AbstractHuman papillomaviruses (HPVs) infect epithelia, including the simple and the squamous epithelia of the cervix, where they can cause cancer and precursor lesions. The molecular events leading from asymptomatic HPV infections to neoplasia are poorly understood. There is evidence that progression is modulated by transcriptional mechanisms that control HPV gene expression. Here, we report the frequent methylation of HPV-18 genomes in cell culture and in situ. DNA methylation is generally known to lead to transcriptional repression due to chromatin changes. We investigated two cell lines derived from cervical cancers, namely, C4-1, which contains one HPV-18 genome, and different clones of HeLa, with 50 HPV-18 genomes. By restriction cleavage, we detected strong methylation of the L1 gene and absence of methylation of parts of the long control region (LCR). A 3-kb segment of the HPV-18 genomes downstream of the oncogenes was deleted in both cell lines. Bisulfite sequencing showed that in C4-1 cells and two HeLa clones, 18 of the 19 CpG residues in the 1.2-kb terminal part of the L1 gene were methylated, whereas a third HeLa clone had only eight methylated CpG groups, indicating changes of the methylation pattern after the establishment of the HeLa cell line. In the same four clones, none of the 12 CpG residues that overlapped with the enhancer and promoter was methylated. In six HPV-18 containing cancers and five smears from asymptomatic patients, most of the CpG residues in the L1 gene were methylated. There was complete or partial methylation, respectively, of the HPV enhancer in three of the cancers, and lack of methylation in the remaining eight samples. The promoter sequences were methylated in three of the six cancers and four of the six smears, and unmethylated elsewhere. Our data show that epithelial cells efficiently target HPV-18 genomes for DNA methylation, which may affect late and early gene transcription
Effect of bilayer coupling on tunneling conductance of double-layer high T_c cuprates
Physical effects of bilayer coupling on the tunneling spectroscopy of high
T cuprates are investigated. The bilayer coupling separates the bonding
and antibonding bands and leads to a splitting of the coherence peaks in the
tunneling differential conductance. However, the coherence peak of the bonding
band is strongly suppressed and broadened by the particle-hole asymmetry in the
density of states and finite quasiparticle life-time, and is difficult to
resolve by experiments. This gives a qualitative account why the bilayer
splitting of the coherence peaks was not clearly observed in tunneling
measurements of double-layer high-T oxides.Comment: 4 pages, 3 figures, to be published in PR
D-branes in Nongeometric Backgrounds
"T-fold" backgrounds are generically-nongeometric compactifications of string
theory, described by T^n fibrations over a base N with transition functions in
the perturbative T-duality group. We review Hull's doubled torus formalism,
which geometrizes these backgrounds, and use the formalism to constrain the
D-brane spectrum (to leading order in g_s and alpha') on T^n fibrations over
S^1 with O(n,n;Z) monodromy. We also discuss the (approximate) moduli space of
such branes and argue that it is always geometric. For a D-brane located at a
point on the base N, the classical ``D-geometry'' is a T^n fibration over a
multiple cover of N.Comment: 29 pages; uses harvmac.tex; v2: substantial revision throughou
Deformations of calibrated D-branes in flux generalized complex manifolds
We study massless deformations of generalized calibrated cycles, which
describe, in the language of generalized complex geometry, supersymmetric
D-branes in N=1 supersymmetric compactifications with fluxes. We find that the
deformations are classified by the first cohomology group of a Lie algebroid
canonically associated to the generalized calibrated cycle, seen as a
generalized complex submanifold with respect to the integrable generalized
complex structure of the bulk. We provide examples in the SU(3) structure case
and in a `genuine' generalized complex structure case. We discuss cases of
lifting of massless modes due to world-volume fluxes, background fluxes and a
generalized complex structure that changes type.Comment: 52 pages, added references, added comment on ellipticity in appendix
B, made minor changes according to instructions referee JHE
de Sitter String Vacua from Supersymmetric D-terms
We propose a new mechanism for obtaining de Sitter vacua in type IIB string
theory compactified on (orientifolded) Calabi-Yau manifolds similar to those
recently studied by Kachru, Kallosh, Linde and Trivedi (KKLT). dS vacuum
appears in KKLT model after uplifting an AdS vacuum by adding an anti-D3-brane,
which explicitly breaks supersymmetry. We accomplish the same goal by adding
fluxes of gauge fields within the D7-branes, which induce a D-term potential in
the effective 4D action. In this way we obtain dS space as a spontaneously
broken vacuum from a purely supersymmetric 4D action. We argue that our
approach can be directly extended to heterotic string vacua, with the dilaton
potential obtained from a combination of gaugino condensation and the D-terms
generated by anomalous U(1) gauge groups.Comment: 17 pages, 1 figur
Global Search for New Physics with 2.0/fb at CDF
Data collected in Run II of the Fermilab Tevatron are searched for
indications of new electroweak-scale physics. Rather than focusing on
particular new physics scenarios, CDF data are analyzed for discrepancies with
the standard model prediction. A model-independent approach (Vista) considers
gross features of the data, and is sensitive to new large cross-section
physics. Further sensitivity to new physics is provided by two additional
algorithms: a Bump Hunter searches invariant mass distributions for "bumps"
that could indicate resonant production of new particles; and the Sleuth
procedure scans for data excesses at large summed transverse momentum. This
combined global search for new physics in 2.0/fb of ppbar collisions at
sqrt(s)=1.96 TeV reveals no indication of physics beyond the standard model.Comment: 8 pages, 7 figures. Final version which appeared in Physical Review D
Rapid Communication
- …