Physical effects of bilayer coupling on the tunneling spectroscopy of high
Tc cuprates are investigated. The bilayer coupling separates the bonding
and antibonding bands and leads to a splitting of the coherence peaks in the
tunneling differential conductance. However, the coherence peak of the bonding
band is strongly suppressed and broadened by the particle-hole asymmetry in the
density of states and finite quasiparticle life-time, and is difficult to
resolve by experiments. This gives a qualitative account why the bilayer
splitting of the coherence peaks was not clearly observed in tunneling
measurements of double-layer high-Tc oxides.Comment: 4 pages, 3 figures, to be published in PR