249 research outputs found

    Ultra-wideband Outdoor Communication Characteristics with and without Traffic

    Get PDF
    [[abstract]]The BER performance for ultra-wideband (UWB) outdoor communication in LOS and NLOS environments with and without traffic is investigated. We obtain the impulse responses of the UWB outdoor environment by both 2.5D SBR-Image method and inverse Fourier transform techniques. The 2.5D SBR-Image method is first considered for two-dimensional environment simulated without heights of obstacles by ray tubes. Then, heights of the obstacles are taken into consideration between the transmitters and receivers. If the height of ray is lower than that of obstacles, the ray is neglected for the receivers. This effectively reduces the simulating time. By using the impulse response of multipath channels, the BER performance for binary pulse amplitude modulation communications over the radio UWB system is evaluated. We have performed computer simulations in LOS and NLOS environments with and without traffic in dense building areas. Numerical results have shown that the multipath effect caused by moving vehicles in the outdoor LOS and NLOS environments has a great impact on BER performance. Rake receivers are used to improve the outage probability. The relationship between traffic and BER performance is investigated; meanwhile, the characteristics of LOS and NLOS outdoor UWB environments are analyzed. Our investigation results can help improve planning and design of the UWB system.[[notice]]補正完畢[[incitationindex]]SCI[[booktype]]電子

    Induction chemotherapy with dose-modified docetaxel, cisplatin, and 5-fluorouracil in Asian patients with borderline resectable or unresectable head and neck cancer

    Get PDF
    BackgroundSignificant ethnic differences in susceptibility to the effects of chemotherapy exist. Here, we retrospectively analyzed the safety and efficacy of induction chemotherapy (ICT) with dose-modified docetaxel, cisplatin, and 5-fluorouracil (TPF) in Asian patients with borderline resectable or unresectable head and neck squamous cell carcinoma (HNSCC).MethodsBased on the incidence of adverse events that occurred during daily practice, TPF90 (90% of the original TPF dosage; docetaxel 67.5 mg/m2 on Day 1, cisplatin 67.5 mg/m2 on Day 1, and 5-fluorouracil 675 mg/m2 on Days 1–5) was used for HNSCC patients who were scheduled to receive ICT TPF.ResultsBetween March 2011 and May 2014, 52 consecutive patients with borderline resectable or unresectable HNSCC were treated with ICT TPF90 followed by concurrent chemoradiotherapy. Forty-four patients (84.6%) received at least three cycles of ICT TPF90. The most commonly observed Grade 3–4 adverse events included neutropenia (35%), anemia (25%), stomatitis (35%), diarrhea (16%), and infections (13.5%). In an intention-to-treat analysis, the complete and partial response rates after ICT TPF90 were 13.5% and 59.6%, respectively. The complete and partial response rates following radiotherapy and salvage surgery were 42.3% and 25.0%, respectively. The estimated 3-year overall survival and progression-free survival rates were 41% [95% confidence interval (CI): 25–56%] and 23% (95% CI: 10–39%), respectively. The observed median overall survival and progression-free survival were 21.0 months (95% CI: 13.3–28.7 months) and 16.0 months (95% CI: 10.7–21.3 months), respectively.ConclusionTPF90 is a suitable option for Asian patients with borderline resectable or unresectable HNSCC who are scheduled for ICT

    Twist Controls Skeletal Development and Dorsoventral Patterning by Regulating Runx2 in Zebrafish

    Get PDF
    [[abstract]]Background: Twist1a and twist1b are the principal components of twists that negatively regulate a number of cellular signaling events. Expression of runx2 and downstream targets is essential for skeletal development and ventral organizer formation and specification in early vertebrate embryos, but what controls ventral activity of maternal runx2 and how twists function in zebrafish embryogenesis still remain unclear. Methodology/Principal Findings: By studying the loss of twist induced by injection of morpholino-oligonucleotide in zebrafish, we found that twist1a and twist1b, but not twist2 or twist3, were required for proper skeletal development and dorsoventral patterning in early embryos. Overexpression of twist1a or twist1b following mRNA injection resulted in deteriorated skeletal development and formation of typical dorsalized embryos, whereas knockdown of twist1a and twist1b led to the formation of abnormal embryos with enhanced skeletal formation and typical ventralized patterning. Overexpression of twist1a or twist1b decreased the expression of runx2b, whereas twist1a and twist1b knockdown increased runx2b expression. We have further demonstrated that phenotypes induced by twist1a and twist1b knockdown were rescued by runx2b knockdown. Conclusions/Significance: Together, these results suggest that twist1a and twist1b control skeletal development and dorsoventral patterning by regulating runx2b in zebrafish and provide potential targets for the treatment of diseases or syndromes associated with decreased skeletal development.[[journaltype]]國外[[incitationindex]]SCI[[booktype]]紙本[[countrycodes]]US

    A Guided Mode Resonance Aptasensor for Thrombin Detection

    Get PDF
    Recent developments in aptamers have led to their widespread use in analytical and diagnostic applications, particularly for biosensing. Previous studies have combined aptamers as ligands with various sensors for numerous applications. However, merging the aptamer developments with guided mode resonance (GMR) devices has not been attempted. This study reports an aptasensor based home built GMR device. The 29-mer thrombin aptamer was immobilized on the surface of a GMR device as a recognizing ligand for thrombin detection. The sensitivity reported in this first trial study is 0.04 nm/μM for thrombin detection in the concentration range from 0.25 to 1 μM and the limit of detection (LOD) is 0.19 μM. Furthermore, the binding affinity constant (Ka) measured is in the range of 106 M−1. The investigation has demonstrated that such a GMR aptasensor has the required sensitivity for the real time, label-free, in situ detection of thrombin and provides kinetic information related to the binding

    Treatment results for hypopharyngeal cancer by different treatment strategies and its secondary primary- an experience in Taiwan

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>The aim of this study was to evaluate treatment results in our hypopharyngeal cancer patients.</p> <p>Patients and Methods</p> <p>A total of three hundred and ninety five hypopharyngeal cancer patients received radical treatment at our hospital; 96% were male. The majority were habitual smokers (88%), alcohol drinkers (73%) and/or betel quid chewers (51%). All patients received a CT scan or MRI for tumor staging before treatment. The stage distribution was stage I: 2 (0.5%); stage II: 22 (5.6%); stage III: 57 (14.4%) and stage IV: 314 (79.5%). Radical surgery was used first in 81 patients (20.5%), and the remaining patients (79.5%) received organ preservation-intended treatment (OPIT). In the OPIT group, 46 patients received radiotherapy alone, 156 patients received chemotherapy followed by radiotherapy (CT/RT) and 112 patients received concomitant chemo-radiotherapy (CCRT).</p> <p>Results</p> <p>The five-year overall survival rates for stages I/II, III and IV were 49.5%, 47.4% and 18.6%, respectively. There was no significant difference in overall and disease-specific survival rates between patients who received radical surgery first and those who received OPIT. In the OPIT group, CCRT tended to preserve the larynx better (p = 0.088), with three-year larynx preservation rates of 44.8% for CCRT and 27.2% for CT/RT. Thirty-seven patients developed a second malignancy, with an annual incidence of 4.6%.</p> <p>Conclusions</p> <p>There was no survival difference between OPIT and radical surgery in hypopharyngeal cancer patients at our hospital. CCRT may offer better laryngeal preservation than RT alone or CT/RT. However, prospective studies are still needed to confirm this finding. Additionally, second primary cancers are another important issue for hypopharyngeal cancer management.</p

    Aberrant Sensory Gating of the Primary Somatosensory Cortex Contributes to the Motor Circuit Dysfunction in Paroxysmal Kinesigenic Dyskinesia

    Get PDF
    Paroxysmal kinesigenic dyskinesia (PKD) is conventionally regarded as a movement disorder (MD) and characterized by episodic hyperkinesia by sudden movements. However, patients of PKD often have sensory aura and respond excellently to antiepileptic agents. PRRT2 mutations, the most common genetic etiology of PKD, could cause epilepsy syndromes as well. Standing in the twilight zone between MDs and epilepsy, the pathogenesis of PKD is unclear. Gamma oscillations arise from the inhibitory interneurons which are crucial in the thalamocortical circuits. The role of synchronized gamma oscillations in sensory gating is an important mechanism of automatic cortical inhibition. The patterns of gamma oscillations have been used to characterize neurophysiological features of many neurological diseases, including epilepsy and MDs. This study was aimed to investigate the features of gamma synchronizations in PKD. In the paired-pulse electrical-stimulation task, we recorded the magnetoencephalographic data with distributed source modeling and time-frequency analysis in 19 patients of newly-diagnosed PKD without receiving pharmacotherapy and 18 healthy controls. In combination with the magnetic resonance imaging, the source of gamma oscillations was localized in the primary somatosensory cortex. Somatosensory evoked fields of PKD patients had a reduced peak frequency (p &lt; 0.001 for the first and the second response) and a prolonged peak latency (the first response p = 0.02, the second response p = 0.002), indicating the synchronization of gamma oscillation is significantly attenuated. The power ratio between two responses was much higher in the PKD group (p = 0.013), indicating the incompetence of activity suppression. Aberrant gamma synchronizations revealed the defective sensory gating of the somatosensory area contributes the pathogenesis of PKD. Our findings documented disinhibited cortical function is a pathomechanism common to PKD and epilepsy, thus rationalized the clinical overlaps of these two diseases and the therapeutic effect of antiepileptic agents for PKD. There is a greater reduction of the peak gamma frequency in PRRT2-related PKD than the non-PRRT PKD group (p = 0.028 for the first response, p = 0.004 for the second response). Loss-of-function PRRT2 mutations could lead to synaptic dysfunction. The disinhibiton change on neurophysiology reflected the impacts of PRRT2 mutations on human neurophysiology
    corecore