57 research outputs found

    A translational approach for limb vascular delivery of the micro-dystrophin gene without high volume or high pressure for treatment of Duchenne muscular dystrophy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder with monogenic mutations setting the stage for successful gene therapy treatment. We have completed a study that directly deals with the following key issues that can be directly adapted to a gene therapy clinical trial using rAAV considering the following criteria: 1) A regional vascular delivery approach that will protect the patient from widespread dissemination of virus; 2) an approach to potentially facilitate safe passage of the virus for efficient skeletal muscle transduction; 3) the use of viral doses to accommodate current limitations imposed by vector production methods; 4) and at the same time, achieve a clinically meaningful outcome by transducing multiple muscles in the lower limb to prolong ambulation.</p> <p>Methods</p> <p>The capacity of AAV1, AAV6 or AAV8 to cross the vascular endothelial barrier carrying a micro-dystrophin cDNA was compared under identical conditions with delivery through a catheter placed in the femoral artery of the mdx mouse. Transduction efficiency was assessed by immuno-staining using an antibody (Manex1a) that recognizes the N-terminus of micro-dystrophin. The degree of physiologic correction was assessed by measuring tetanic force and protection from eccentric contraction in the extensor digitorum longus muscle (EDL). The vascular delivery paradigm found successful in the mouse was carried to the non-human primate to test its potential translation to boys with DMD.</p> <p>Results</p> <p>Regional vascular delivery resulted in transduction by rAAV8.micro-dystrophin reaching 94.5 ± 0.9 (1 month), 91.3 ± 3.1 (2 months), and 89.6 ± 1.6% (3 months). rAAV6.micro-dystrophin treated animals demonstrated 87.7 ± 6.8 (1 month), 78.9 ± 7.4 (2 months), and 81.2 ± 6.2% (3 months) transduction. In striking contrast, rAAV1 demonstrated very low transduction efficiency [0.9 ± 0.3 (1 month), 2.1 ± 0.8 (2 months), and 2.1 ± 0.7% (3 months)] by vascular delivery. Micro-dystrophin delivered by rAAV8 and rAAV6 through the femoral artery significantly improved tetanic force and protected against eccentric contraction. Mouse studies translated to the hindlimb of cynamologous macaques using a similar vascular delivery paradigm. rAAV8 carrying eGFP in doses proportional to the mouse (5 × 10<sup>12 </sup>vg/kg in mouse vs 2 × 10<sup>12 </sup>vg/kg in monkey) demonstrated widespread gene expression [medial gastrocnemius – 63.8 ± 4.9%, lateral gastrocnemius – 66.0 ± 4.5%, EDL – 80.2 ± 3.1%, soleus – 86.4 ± 1.9%, TA – 72.2 ± 4.0%.</p> <p>Conclusion</p> <p>These studies demonstrate regional vascular gene delivery with AAV serotype(s) in mouse and non-human primate at doses, pressures and volumes applicable for clinical trials in children with DMD.</p

    Cross-Sectional Exploration of Plasma Biomarkers of Alzheimer\u27s Disease in Down Syndrome: Early Data from the Longitudinal Investigation for Enhancing Down Syndrome Research (LIFE-DSR) Study

    Get PDF
    With improved healthcare, the Down syndrome (DS) population is both growing and aging rapidly. However, with longevity comes a very high risk of Alzheimer’s disease (AD). The LIFE-DSR study (NCT04149197) is a longitudinal natural history study recruiting 270 adults with DS over the age of 25. The study is designed to characterize trajectories of change in DS-associated AD (DS-AD). The current study reports its cross-sectional analysis of the first 90 subjects enrolled. Plasma biomarkers phosphorylated tau protein (p-tau), neurofilament light chain (NfL), amyloid β peptides (Aβ1-40, Aβ1-42), and glial fibrillary acidic protein (GFAP) were undertaken with previously published methods. The clinical data from the baseline visit include demographics as well as the cognitive measures under the Severe Impairment Battery (SIB) and Down Syndrome Mental Status Examination (DS-MSE). Biomarker distributions are described with strong statistical associations observed with participant age. The biomarker data contributes to understanding DS-AD across the spectrum of disease. Collectively, the biomarker data show evidence of DS-AD progression beginning at approximately 40 years of age. Exploring these data across the full LIFE-DSR longitudinal study population will be an important resource in understanding the onset, progression, and clinical profiles of DS-AD pathophysiology

    COVID-19 Vaccination of Individuals with Down Syndrome—Data from the Trisomy 21 Research Society Survey on Safety, Efficacy, and Factors Associated with the Decision to Be Vaccinated

    Get PDF
    Individuals with Down syndrome (DS) are among the groups with the highest risk for severe COVID-19. Better understanding of the efficacy and risks of COVID-19 vaccines for individuals with DS may help improve uptake of vaccination. The T21RS COVID-19 Initiative launched an international survey to obtain information on safety and efficacy of COVID-19 vaccines for individuals with DS. De-identified survey data collected between March and December 2021 were analyzed. Of 2172 individuals with DS, 1973 (91%) had received at least one vaccine dose (57% BNT162b2), 107 (5%) were unvaccinated by choice, and 92 (4%) were unvaccinated for other reasons. Most participants had either no side effects (54%) or mild ones such as pain at the injection site (29%), fatigue (12%), and fever (7%). Severe side effects occurred in <0.5% of participants. About 1% of the vaccinated individuals with DS contracted COVID-19 after vaccination, and all recovered. Individuals with DS who were unvaccinated by choice were more likely to be younger, previously recovered from COVID-19, and also unvaccinated against other recommended vaccines. COVID-19 vaccines have been shown to be safe for individuals with DS and effective in terms of resulting in minimal breakthrough infections and milder disease outcomes among fully vaccinated individuals with DS

    COVID-19 Vaccination of Individuals with Down Syndrome—Data from the Trisomy 21 Research Society Survey on Safety, Efficacy, and Factors Associated with the Decision to Be Vaccinated

    Get PDF
    Individuals with Down syndrome (DS) are among the groups with the highest risk for severe COVID-19. Better understanding of the efficacy and risks of COVID-19 vaccines for individuals with DS may help improve uptake of vaccination. The T21RS COVID-19 Initiative launched an international survey to obtain information on safety and efficacy of COVID-19 vaccines for individuals with DS. De-identified survey data collected between March and December 2021 were analyzed. Of 2172 individuals with DS, 1973 (91%) had received at least one vaccine dose (57% BNT162b2), 107 (5%) were unvaccinated by choice, and 92 (4%) were unvaccinated for other reasons. Most participants had either no side effects (54%) or mild ones such as pain at the injection site (29%), fatigue (12%), and fever (7%). Severe side effects occurred in <0.5% of participants. About 1% of the vaccinated individuals with DS contracted COVID-19 after vaccination, and all recovered. Individuals with DS who were unvaccinated by choice were more likely to be younger, previously recovered from COVID-19, and also unvaccinated against other recommended vaccines. COVID-19 vaccines have been shown to be safe for individuals with DS and effective in terms of resulting in minimal breakthrough infections and milder disease outcomes among fully vaccinated individuals with DS

    Systemic Gene Delivery in Large Species for Targeting Spinal Cord, Brain, and Peripheral Tissues for Pediatric Disorders

    Get PDF
    Adeno-associated virus type 9 (AAV9) is a powerful tool for delivering genes throughout the central nervous system (CNS) following intravenous injection. Preclinical results in pediatric models of spinal muscular atrophy (SMA) and lysosomal storage disorders provide a compelling case for advancing AAV9 to the clinic. An important translational step is to demonstrate efficient CNS targeting in large animals at various ages. In the present study, we tested systemically injected AAV9 in cynomolgus macaques, administered at birth through 3 years of age for targeting CNS and peripheral tissues. We show that AAV9 was efficient at crossing the blood–brain barrier (BBB) at all time points investigated. Transgene expression was detected primarily in glial cells throughout the brain, dorsal root ganglia neurons and motor neurons within the spinal cord, providing confidence for translation to SMA patients. Systemic injection also efficiently targeted skeletal muscle and peripheral organs. To specifically target the CNS, we explored AAV9 delivery to cerebrospinal fluid (CSF). CSF injection efficiently targeted motor neurons, and restricted gene expression to the CNS, providing an alternate delivery route and potentially lower manufacturing requirements for older, larger patients. Our findings support the use of AAV9 for gene transfer to the CNS for disorders in pediatric populations

    Opportunities, barriers, and recommendations in down syndrome research

    Get PDF
    Recent advances in medical care have increased life expectancy and improved the quality of life for people with Down syndrome (DS). These advances are the result of both pre-clinical and clinical research but much about DS is still poorly understood. In 2020, the NIH announced their plan to update their DS research plan and requested input from the scientific and advocacy community. The National Down Syndrome Society (NDSS) and the LuMind IDSC Foundation worked together with scientific and medical experts to develop recommendations for the NIH research plan. NDSS and LuMind IDSC assembled over 50 experts across multiple disciplines and organized them in eleven working groups focused on specific issues for people with DS. This review article summarizes the research gaps and recommendations that have the potential to improve the health and quality of life for people with DS within the next decade. This review highlights many of the scientific gaps that exist in DS research. Based on these gaps, a multidisciplinary group of DS experts has made recommendations to advance DS research. This paper may also aid policymakers and the DS community to build a comprehensive national DS research strategy

    Cross-Sectional Exploration of Plasma Biomarkers of Alzheimer's Disease in Down Syndrome: Early Data from the Longitudinal Investigation for Enhancing Down Syndrome Research (LIFE-DSR) Study

    Get PDF
    With improved healthcare, the Down syndrome (DS) population is both growing and aging rapidly. However, with longevity comes a very high risk of Alzheimer's disease (AD). The LIFE-DSR study (NCT04149197) is a longitudinal natural history study recruiting 270 adults with DS over the age of 25. The study is designed to characterize trajectories of change in DS-associated AD (DS-AD). The current study reports its cross-sectional analysis of the first 90 subjects enrolled. Plasma biomarkers phosphorylated tau protein (p-tau), neurofilament light chain (NfL), amyloid β peptides (Aβ1-40, Aβ1-42), and glial fibrillary acidic protein (GFAP) were undertaken with previously published methods. The clinical data from the baseline visit include demographics as well as the cognitive measures under the Severe Impairment Battery (SIB) and Down Syndrome Mental Status Examination (DS-MSE). Biomarker distributions are described with strong statistical associations observed with participant age. The biomarker data contributes to understanding DS-AD across the spectrum of disease. Collectively, the biomarker data show evidence of DS-AD progression beginning at approximately 40 years of age. Exploring these data across the full LIFE-DSR longitudinal study population will be an important resource in understanding the onset, progression, and clinical profiles of DS-AD pathophysiology

    Longevity of a Woman With Down Syndrome: A Case Study

    Full text link

    Challenges of Pediatric Disease in Adulthood

    No full text
    Some chronic diseases — such as the rare bone disease X-linked hypophosphatemia, the impetus for a study reported within Volume 7, Issue 2 of the Journal of Patient-Centered Research and Reviews — are diagnosed in childhood but become more symptomatic in adulthood. In this editorial, the challenges, pitfalls, and opportunities regarding the care of adults with childhood-onset chronic diseases are examined using Down syndrome, cystic fibrosis, congenital heart disease, and Hirschsprung disease as examples
    • …
    corecore