210 research outputs found

    Sandfly-Borne Viruses of Demonstrated/Relevant Medical Importance

    Get PDF
    Sandflies show distribution in a vast geographical area from Europe to Asia, Africa, Australia, and Central and South America where they can transmit a large number of viruses. Between these viruses, the most important are grouped into the Phlebovirus genus (family Phenuiviridae). Among them, several sandfly-borne phleboviruses cause self-limiting febrile disease (sandfly fever) or central and peripheral nervous system infections. Data concerning the geographic distribution of these phleboviruses has drastically increased during the last decade in both the new and the old worlds. The current situation depicts a high viral diversity with taxonomic groups containing human pathogenic and non-pathogenic viruses. This merits to provide insight to address the question of medical and veterinary public health impact of all these viruses, which are poorly studied. To do so, integrated and translational approaches must use ecological, epidemiological, serological and direct clinical evidence. Beside, other viruses transmitted by sandflies and belonging to Rhabdoviridae and Reoviridae families can also be of veterinary and public health importance. The chapter aims to provide a comprehensive view of the sandfly-borne viral pathogens of the public health impact on humans and other vertebrates in the old and new worlds

    European Network for Neglected Vectors and Vector-Borne Infections COST Action Guidelines: What Is This About and What Is This For?

    Full text link
    European network for neglected vectors and vector-borne infections COST action guidelines: What Is this about and what iIs this For

    Human seroprevalence of Toscana virus and Sicilian phlebovirus in the southwest of Portugal

    Get PDF
    Funding Information: Fundação para a Ciência e a Tecnologia, I.P. (FCT) for funding through contract GHTM-UID/Multi/04413/2013 and Investigator Starting Grant IF/01302/2015. AP was supported by the Portuguese Ministry of Education and Science (via FCT) through a PhD grant (SFRH/BD/116516/2016). Publisher Copyright: © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.Toscana virus (TOSV) is emergent in the Mediterranean region and responsible for outbreaks of encephalitis or meningoencephalitis. Sicilian phlebovirus (SFSV) cause epidemics of febrile illness during the summer. The aim of this study was to evaluate the presence of antibodies against TOSV and SFSV in humans in the southwest of Portugal. Neutralizing antibodies to TOSV and SFSV were respectively detected in 5.3% and 4.3% out of 400 human sera tested highlighting the need to increase public health awareness regarding phleboviruses and to include them in the differential diagnosis in patients presenting with fever of short duration and neurological manifestations.publishersversionpublishe

    Emerging viral respiratory tract infections—environmental risk factors and transmission

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.The past decade has seen the emergence of several novel viruses that cause respiratory tract infections in human beings, including Middle East respiratory syndrome coronavirus (MERS-CoV) in Saudi Arabia, an H7N9 influenza A virus in eastern China, a swine-like influenza H3N2 variant virus in the USA, and a human adenovirus 14p1 also in the USA. MERS-CoV and H7N9 viruses are still a major worldwide public health concern. The pathogenesis and mode of transmission of MERS-CoV and H7N9 influenza A virus are poorly understood, making it more difficult to implement intervention and preventive measures. A united and coordinated global response is needed to tackle emerging viruses that can cause fatal respiratory tract infections and to fill major gaps in the understanding of the epidemiology and transmission dynamics of these viruses

    How Did Zika Virus Emerge in the Pacific Islands and Latin America?

    Get PDF
    The unexpected emergence of Zika virus (ZIKV) in the Pacific Islands and Latin America and its association with congenital Zika virus syndrome (CZVS) (which includes microcephaly) and Guillain-Barré syndrome (GBS) have stimulated wide-ranging research. High densities of susceptible Aedes spp., immunologically naive human populations, global population growth with increased urbanization, and escalation of global transportation of humans and commercial goods carrying vectors and ZIKV undoubtedly enhanced the emergence of ZIKV. However, flavivirus mutations accumulate with time, increasing the likelihood that genetic viral differences are determinants of change in viral phenotype. Based on comparative ZIKV complete genome phylogenetic analyses and temporal estimates, we identify amino acid substitutions that may be associated with increased viral epidemicity, CZVS, and GBS. Reverse genetics, vector competence, and seroepidemiological studies will test our hypothesis that these amino acid substitutions are determinants of epidemic and neurotropic ZIKV emergence

    Toscana, West Nile, Usutu and tick-borne encephalitis viruses: external quality assessment for molecular detection of emerging neurotropic viruses in Europe, 2017

    Get PDF
    BackgroundNeurotropic arboviruses are increasingly recognised as causative agents of neurological disease in Europe but underdiagnosis is still suspected. Capability for accurate diagnosis is a prerequisite for adequate clinical and public health response.AimTo improve diagnostic capability in EVD-La

    Cowpox Virus Transmission from Pet Rats to Humans, France

    Get PDF
    In early 2009, four human cases of cowpox virus cutaneous infection in northern France, resulting from direct contact with infected pet rats (Rattus norvegicus), were studied. Pet rats, originating from the same pet store, were shown to be infected by a unique virus strain. Infection was then transmitted to humans who purchased or had contact with pet rats

    Point of Care Strategy for Rapid Diagnosis of Novel A/H1N1 Influenza Virus

    Get PDF
    Within months of the emergence of the novel A/H1N1 pandemic influenza virus (nA/H1N1v), systematic screening for the surveillance of the pandemic was abandoned in France and in some other countries. At the end of June 2009, we implemented, for the public hospitals of Marseille, a Point Of Care (POC) strategy for rapid diagnosis of the novel A/H1N1 influenza virus, in order to maintain local surveillance and to evaluate locally the kinetics of the pandemic.Two POC laboratories, located in strategic places, were organized to receive and test samples 24 h/24. POC strategy consisted of receiving and processing naso-pharyngeal specimens in preparation for the rapid influenza diagnostic test (RIDT) and real-time RT-PCR assay (rtRT-PCR). This strategy had the theoretical capacity of processing up to 36 samples per 24 h. When the flow of samples was too high, the rtRT-PCR test was abandoned in the POC laboratories and transferred to the core virology laboratory. Confirmatory diagnosis was performed in the core virology laboratory twice a day using two distinct rtRT-PCR techniques that detect either influenza A virus or nA/N1N1v. Over a period of three months, 1974 samples were received in the POC laboratories, of which 111 were positive for nA/H1N1v. Specificity and sensitivity of RIDT were 100%, and 57.7% respectively. Positive results obtained using RIDT were transmitted to clinical practitioners in less than 2 hours. POC processed rtRT-PCR results were available within 7 hours, and rtRT-PCR confirmation within 24 hours.The POC strategy is of benefit, in all cases (with or without rtRT-PCR assay), because it provides continuous reception/processing of samples and reduction of the time to provide consolidated results to the clinical practitioners. We believe that implementation of the POC strategy for the largest number of suspect cases may improve the quality of patient care and our knowledge of the epidemiology of the pandemic

    Coordinated Implementation of Chikungunya Virus Reverse Transcription–PCR

    Get PDF
    A preformulated chikungunya virus real-time reverse transcription–PCR, quality-confirmed oligonucleotides, and noninfectious virus controls were distributed by the European Network for the Diagnosis of Imported Viral Diseases. An international proficiency study with 31 participants demonstrated that ad hoc implementation of molecular diagnostics was feasible and successful

    Use of Next Generation Sequencing to study two cowpox virus outbreaks

    Get PDF
    Background Between 2008 and 2011 about 40 cases of human cowpox were reported from Germany and France. Infections had been acquired via close contact to infected, young pet rats. An identical and unique sequence of the hemagglutinin gene was found in various cowpox virus (CPXV) isolates pointing to a common source of infection. In a second CPXV outbreak in cats in a small animal clinic in Germany in 2015, four out of five hospitalized cats showed identical hemagglutinin sequences and thus, a hospital-acquired transmission had been assumed. Next-Generation Sequencing was performed in order to re-investigate the outbreaks, as epidemiological data could not confirm all cases. Methods Homogenates of lesion material from rats, cats and humans were cultivated in cell culture. The genomes of four virus isolates, nine CPXVs from our strain collections and from DNA of three paraffin-embedded lesion materials were determined by Next Generation Sequencing (NGS). For phylogenetic analyses a MAFFT-alignment was generated. A distance matrix based on concatenated SNPs was calculated and plotted as dendrogram using Unweighted Pair Group Method with Arithmetic mean (UPGMA) for visualization. Results Aligning of about 200.000 nucleotides of 8 virus isolates associated with the pet rat outbreak revealed complete identity of six genomes, the remainder two genomes differed in as little as 3 SNPs. When comparing this dataset with four already published CPXV genomes also associated with the pet rat outbreak, again a maximum difference of 3 SNPs was found. The outbreak which lasted from 2008 till 2011 was indeed caused by a single strain which has maintained an extremely high level of clonality over 4 years. Aligning genomic sequences from four cases of feline cowpox revealed 3 identical sequences and one sequence which differed in 65 nucleotides. Although identical hemagglutinin sequences had been obtained from four hospitalized cats, genomic sequencing proved that a hospital-acquired transmission had occurred in only three cats. Conclusion Analyzing the rather short sequence of the hemagglutinin gene is not sufficient to conduct molecular trace back analyses. Instead, whole genome sequencing is the method of choice which can even be applied to paraffin-embedded specimens
    corecore