136 research outputs found

    Genetic and immune landscape evolution in MMR-deficient colorectal cancer.

    Get PDF
    Mismatch repair-deficient (MMRd) colorectal cancers (CRCs) have high mutation burdens, which make these tumours immunogenic and many respond to immune checkpoint inhibitors. The MMRd hypermutator phenotype may also promote intratumour heterogeneity (ITH) and cancer evolution. We applied multiregion sequencing and CD8 and programmed death ligand 1 (PD-L1) immunostaining to systematically investigate ITH and how genetic and immune landscapes coevolve. All cases had high truncal mutation burdens. Despite pervasive ITH, driver aberrations showed a clear hierarchy. Those in WNT/β-catenin, mitogen-activated protein kinase, and TGF-β receptor family genes were almost always truncal. Immune evasion (IE) drivers, such as inactivation of genes involved in antigen presentation or IFN-γ signalling, were predominantly subclonal and showed parallel evolution. These IE drivers have been implicated in immune checkpoint inhibitor resistance or sensitivity. Clonality assessments are therefore important for the development of predictive immunotherapy biomarkers in MMRd CRCs. Phylogenetic analysis identified three distinct patterns of IE driver evolution: pan-tumour evolution, subclonal evolution, and evolutionary stasis. These, but neither mutation burdens nor heterogeneity metrics, significantly correlated with T-cell densities, which were used as a surrogate marker of tumour immunogenicity. Furthermore, this revealed that genetic and T-cell infiltrates coevolve in MMRd CRCs. Low T-cell densities in the subgroup without any known IE drivers may indicate an, as yet unknown, IE mechanism. PD-L1 was expressed in the tumour microenvironment in most samples and correlated with T-cell densities. However, PD-L1 expression in cancer cells was independent of T-cell densities but strongly associated with loss of the intestinal homeobox transcription factor CDX2. This explains infrequent PD-L1 expression by cancer cells and may contribute to a higher recurrence risk of MMRd CRCs with impaired CDX2 expression. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland

    The relationship between vitamin D status and muscle strength in young healthy adults from sunny climate countries currently living in the northeast of Scotland

    Get PDF
    Summary: The current study examined the relationship between vitamin D status and muscle strength in young healthy adults: residents (>6 months) and newcomers (0–3 months), originally from sunny climate countries but currently living in the northeast of Scotland. Our longitudinal data found a positive, albeit small, relationship between vitamin D status and knee extensor isometric strength.  Introduction: Vitamin D has been suggested to play a role in muscle health and function, but studies so far have been primarily in older populations for falls prevention and subsequent risk of fractures.  Methods: Vitamin D status was assessed in a healthy young adults from sunny climate countries (n = 71, aged 19–42 years) with 56% seen within 3 months of arriving in Aberdeen [newcomers; median (range) time living in the UK = 2 months (9–105 days)] and the remainder resident for >6 months [residents; 23 months (6–121 months)]. Participants attended visits every 3 months for 15 months. At each visit, fasted blood samples were collected for analysis of serum 25-hydroxyvitamin D [25(OH)D], parathyroid hormone (PTH), carboxy-terminal collagen crosslinks (CTX) and N-terminal propeptide of type I collagen (P1NP). Maximal voluntary contractions (MVC) were performed for grip strength (both arms) and for maximal isometric strength of the knee extensors (right knee).  Results: There were small seasonal variations in 25(OH)D concentrations within the newcomers and residents, but no seasonal variation in bone turnover markers. There was a positive, albeit small, association between 25(OH)D and knee extensor maximal isometric strength. Mixed modelling predicted that for each 1 nmol/L increase in 25(OH)D, peak torque would increase by 1 Nm (p = 0.04).  Conclusions: This study suggests that vitamin D may be important for muscle health in young adults migrating from sunnier climates to high latitudes, yet the potential effect is small

    Novel approach to analysing large data sets of personal sun exposure measurements

    Get PDF
    Personal sun exposure measurements provide important information to guide the development of sun awareness and disease prevention campaigns. We assess the scaling properties of personal ultraviolet radiation (pUVR) sun exposure measurements using the wavelet transform (WT) spectral analysis to process long-range, high-frequency personal recordings collected by electronic UVR dosimeters designed to measure erythemal UVR exposure. We analysed the sun exposure recordings of school children, farmers, marathon runners and outdoor workers in South Africa, and construction workers and work site supervisors in New Zealand. We found scaling behaviour in all the analysed pUVR data sets. We found that the observed scaling changes from uncorrelated to long-range correlated with increasing duration of sun exposure. Peaks in the WT spectra that we found suggest the existence of characteristic times in sun exposure behaviour that were to some extent universal across our data set. Our study also showed that WT measures enable group classification, as well as distinction between individual UVR exposures, otherwise unattainable by conventional statistical methods

    Effects of phlebotomy-induced reduction of body iron stores on metabolic syndrome: results from a randomized clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Metabolic syndrome (METS) is an increasingly prevalent but poorly understood clinical condition characterized by insulin resistance, glucose intolerance, dyslipidemia, hypertension, and obesity. Increased oxidative stress catalyzed by accumulation of iron in excess of physiologic requirements has been implicated in the pathogenesis of METS, but the relationships between cause and effect remain uncertain. We tested the hypothesis that phlebotomy-induced reduction of body iron stores would alter the clinical presentation of METS, using a randomized trial.</p> <p>Methods</p> <p>In a randomized, controlled, single-blind clinical trial, 64 patients with METS were randomly assigned to iron reduction by phlebotomy (n = 33) or to a control group (n = 31), which was offered phlebotomy at the end of the study (waiting-list design). The iron-reduction patients had 300 ml of blood removed at entry and between 250 and 500 ml removed after 4 weeks, depending on ferritin levels at study entry. Primary outcomes were change in systolic blood pressure (SBP) and insulin sensitivity as measured by Homeostatic Model Assessment (HOMA) index after 6 weeks. Secondary outcomes included HbA1c, plasma glucose, blood lipids, and heart rate (HR).</p> <p>Results</p> <p>SBP decreased from 148.5 ± 12.3 mmHg to 130.5 ± 11.8 mmHg in the phlebotomy group, and from 144.7 ± 14.4 mmHg to 143.8 ± 11.9 mmHg in the control group (difference -16.6 mmHg; 95% CI -20.7 to -12.5; <it>P </it>< 0.001). No significant effect on HOMA index was seen. With regard to secondary outcomes, blood glucose, HbA1c, low-density lipoprotein/high-density lipoprotein ratio, and HR were significantly decreased by phlebotomy. Changes in BP and HOMA index correlated with ferritin reduction.</p> <p>Conclusions</p> <p>In patients with METS, phlebotomy, with consecutive reduction of body iron stores, lowered BP and resulted in improvements in markers of cardiovascular risk and glycemic control. Blood donation may have beneficial effects for blood donors with METS.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01328210">NCT01328210</a></p> <p>Please see related article: <url>http://www.biomedcentral.com/1741-7015/10/53</url></p

    Epstein-Barr Virus Stimulates Torque Teno Virus Replication: A Possible Relationship to Multiple Sclerosis

    Get PDF
    Viral infections have been implicated in the pathogenesis of multiple sclerosis. Epstein-Barr virus (EBV) has frequently been investigated as a possible candidate and torque teno virus (TTV) has also been discussed in this context. Nevertheless, mechanistic aspects remain unresolved. We report viral replication, as measured by genome amplification, as well as quantitative PCR of two TTV-HD14 isolates isolated from multiple sclerosis brain in a series of EBV-positive and -negative lymphoblastoid and Burkitt's lymphoma cell lines. Our results demonstrate the replication of both transfected TTV genomes up to day 21 post transfection in all the evaluated cell lines. Quantitative amplification indicates statistically significant enhanced TTV replication in the EBV-positive cell lines, including the EBV-converted BJAB line, in comparison to the EBV-negative Burkitt's lymphoma cell line BJAB. This suggests a helper effect of EBV infections in the replication of TTV. The present study provides information on a possible interaction of EBV and TTV in the etiology and progression of multiple sclerosis

    Structural and ultrastructural alterations in human olfactory pathways and possible associations with herpesvirus 6 infection

    Get PDF
    Publisher Copyright: © 2017 Skuja et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Structural and ultrastructural alterations in human olfactory pathways and putative associations with human herpesvirus 6 (HHV-6) infection were studied. The olfactory bulb/tract samples from 20 subjects with an unspecified encephalopathy determined by pathomorphological examination of the brain autopsy, 17 healthy age-matched and 16 younger controls were used. HHV-6 DNA was detected in 60, 29, and 19% of cases in these groups, respectively. In the whole encephalopathy group, significantly more HHV-6 positive neurons and oligodendrocytes were found in the gray matter, whereas, significantly more HHV-6 positive astrocytes, oligodendrocytes, microglia/macrophages and endothelial cells were found in the white matter. Additionally, significantly more HHV-6 positive astrocytes and, in particular, oligodendrocytes were found in the white matter when compared to the gray matter. Furthermore, when only HHV-6 PCR+ encephalopathy cases were studied, we observed similar but stronger associations between HHV-6 positive oligodendrocytes and CD68 positive cells in the white matter. Cellular alterations were additionally evidenced by anti-S100 immunostaining, demonstrating a significantly higher number of S100 positive cells in the gray matter of the whole encephalopathy group when compared to the young controls, and in the white matter when compared to both control groups. In spite the decreased S100 expression in the PCR+ encephalopathy group when compared to PCR- cases and controls, groups demonstrated significantly higher number of S100 positive cells in the white compared to the gray matter. Ultrastructural changes confirming the damage of myelin included irregularity of membranes and ballooning of paranodal loops. This study shows that among the cellular targets of the nervous system, HHV-6 most severely affects oligodendrocytes and the myelin made by them.publishersversionPeer reviewe

    Erratum to: 36th International Symposium on Intensive Care and Emergency Medicine

    Get PDF
    [This corrects the article DOI: 10.1186/s13054-016-1208-6.]

    The glial growth factors deficiency and synaptic destabilization hypothesis of schizophrenia

    Get PDF
    BACKGROUND: A systems approach to understanding the etiology of schizophrenia requires a theory which is able to integrate genetic as well as neurodevelopmental factors. PRESENTATION OF THE HYPOTHESIS: Based on a co-localization of loci approach and a large amount of circumstantial evidence, we here propose that a functional deficiency of glial growth factors and of growth factors produced by glial cells are among the distal causes in the genotype-to-phenotype chain leading to the development of schizophrenia. These factors include neuregulin, insulin-like growth factor I, insulin, epidermal growth factor, neurotrophic growth factors, erbB receptors, phosphatidylinositol-3 kinase, growth arrest specific genes, neuritin, tumor necrosis factor alpha, glutamate, NMDA and cholinergic receptors. A genetically and epigenetically determined low baseline of glial growth factor signaling and synaptic strength is expected to increase the vulnerability for additional reductions (e.g., by viruses such as HHV-6 and JC virus infecting glial cells). This should lead to a weakening of the positive feedback loop between the presynaptic neuron and its targets, and below a certain threshold to synaptic destabilization and schizophrenia. TESTING THE HYPOTHESIS: Supported by informed conjectures and empirical facts, the hypothesis makes an attractive case for a large number of further investigations. IMPLICATIONS OF THE HYPOTHESIS: The hypothesis suggests glial cells as the locus of the genes-environment interactions in schizophrenia, with glial asthenia as an important factor for the genetic liability to the disorder, and an increase of prolactin and/or insulin as possible working mechanisms of traditional and atypical neuroleptic treatments
    corecore