155 research outputs found

    HDAC3 is a molecular brake of the metabolic switch supporting white adipose tissue browning.

    Get PDF
    White adipose tissue (WAT) can undergo a phenotypic switch, known as browning, in response to environmental stimuli such as cold. Post-translational modifications of histones have been shown to regulate cellular energy metabolism, but their role in white adipose tissue physiology remains incompletely understood. Here we show that histone deacetylase 3 (HDAC3) regulates WAT metabolism and function. Selective ablation of Hdac3 in fat switches the metabolic signature of WAT by activating a futile cycle of de novo fatty acid synthesis and β-oxidation that potentiates WAT oxidative capacity and ultimately supports browning. Specific ablation of Hdac3 in adipose tissue increases acetylation of enhancers in Pparg and Ucp1 genes, and of putative regulatory regions of the Ppara gene. Our results unveil HDAC3 as a regulator of WAT physiology, which acts as a molecular brake that inhibits fatty acid metabolism and WAT browning.Histone deacetylases, such as HDAC3, have been shown to alter cellular metabolism in various tissues. Here the authors show that HDAC3 regulates WAT metabolism by activating a futile cycle of fatty acid synthesis and oxidation, which supports WAT browning

    Zebrafish Numb and Numblike Are Involved in Primitive Erythrocyte Differentiation

    Get PDF
    BACKGROUND:Notch signaling is an evolutionarily conserved regulatory circuitry implicated in cell fate determination in various developmental processes including hematopoietic stem cell self-renewal and differentiation of blood lineages. Known endogenous inhibitors of Notch activity are Numb-Nb and Numblike-Nbl, which play partially redundant functions in specifying and maintaining neuronal differentiation. Nb and Nbl are expressed in most tissues including embryonic and adult hematopoietic tissues in mice and humans, suggesting possible roles for these proteins in hematopoiesis. METHODOLOGY AND PRINCIPAL FINDINGS:We employed zebrafish to investigate the possible functional role of Numb and Numblike during hematopoiesis, as this system allows a detailed analysis even in embryos with severe defects that would be lethal in other organisms. Here we describe that nb/nbl knockdown results in severe reduction or absence of embryonic erythrocytes in zebrafish. Interestingly, nb/nbl knocked-down embryos present severe downregulation of the erythroid transcription factor gata1. This results in erythroblasts which fail to mature and undergo apoptosis. Our results indicate that Notch activity is increased in embryos injected with nb/nbl morpholino, and we show that inhibition of Notch activation can partially rescue the hematopoietic phenotype. CONCLUSIONS AND SIGNIFICANCE:Our results provide the first in vivo evidence of an involvement of Numb and Numblike in zebrafish erythroid differentiation during primitive hematopoiesis. Furthermore, we found that, at least in part, the nb/nbl morphant phenotype is due to enhanced Notch activation within hematopoietic districts, which in turn results in primitive erythroid differentiation defects

    Zebrafish Tmem230a cooperates with the Delta/Notch signaling pathway to modulate endothelial cell number in angiogenic vessels

    Get PDF
    During embryonic development, new arteries, and veins form from preexisting vessels in response to specific angiogenic signals. Angiogenic signaling is complex since not all endothelial cells exposed to angiogenic signals respond equally. Some cells will be selected to become tip cells and acquire migration and proliferation capacity necessary for vessel growth while others, the stalk cells become trailer cells that stay connected with pre-existing vessels and act as a linkage to new forming vessels. Additionally, stalk and tip cells have the capacity to interchange their roles. Stalk and tip cellular responses are mediated in part by the interactions of components of the Delta/Notch and Vegf signaling pathways. We have identified in zebrafish, that the transmembrane protein Tmem230a is a novel regulator of angiogenesis by its capacity to regulate the number of the endothelial cells in intersegmental vessels by co-operating with the Delta/Notch signaling pathway. Modulation of Tmem230a expression by itself is sufficient to rescue improper number of endothelial cells induced by aberrant expression or inhibition of the activity of genes associated with the Dll4/Notch pathway in zebrafish. Therefore, Tmem230a may have a modulatory role in vessel-network formation and growth. As the Tmem230 sequence is conserved in human, Tmem230 may represent a promising novel target for drug discovery and for disease therapy and regenerative medicine in promoting or restricting angiogenesis

    Zebrafish prox1b Mutants Develop a Lymphatic Vasculature, and prox1b Does Not Specifically Mark Lymphatic Endothelial Cells

    Get PDF
    Background: The expression of the Prospero homeodomain transcription factor (Prox1) in a subset of cardinal venous cells specifies the lymphatic lineage in mice. Prox1 is also indispensible for the maintenance of lymphatic cell fate, and is therefore considered a master control gene for lymphangiogenesis in mammals. In zebrafish, there are two prox1 paralogues, the previously described prox1 (also known as prox1a) and the newly identified prox1b. Principal Findings: To investigate the role of the prox1b gene in zebrafish lymphangiogenesis, we knocked-down prox1b and found that depletion of prox1b mRNA did not cause lymphatic defects. We also generated two different prox1b mutant alleles, and maternal-zygotic homozygous mutant embryos were viable and did not show any lymphatic defects. Furthermore, the expression of prox1b was not restricted to lymphatic vessels during zebrafish development. Conclusion: We conclude that Prox1b activity is not essential for embryonic lymphatic development in zebrafish

    HHEX is a transcriptional regulator of the VEGFC/FLT4/PROX1 signaling axis during vascular development.

    Get PDF
    Formation of the lymphatic system requires the coordinated expression of several key regulators: vascular endothelial growth factor C (VEGFC), its receptor FLT4, and a key transcriptional effector, PROX1. Yet, how expression of these signaling components is regulated remains poorly understood. Here, using a combination of genetic and molecular approaches, we identify the transcription factor hematopoietically expressed homeobox (HHEX) as an upstream regulator of VEGFC, FLT4, and PROX1 during angiogenic sprouting and lymphatic formation in vertebrates. By analyzing zebrafish mutants, we found that hhex is necessary for sprouting angiogenesis from the posterior cardinal vein, a process required for lymphangiogenesis. Furthermore, studies of mammalian HHEX using tissue-specific genetic deletions in mouse and knockdowns in cultured human endothelial cells reveal its highly conserved function during vascular and lymphatic development. Our findings that HHEX is essential for the regulation of the VEGFC/FLT4/PROX1 axis provide insights into the molecular regulation of lymphangiogenesis

    The Transcription Factor SOX18 Regulates the Expression of Matrix Metalloproteinase 7 and Guidance Molecules in Human Endothelial Cells

    Get PDF
    Mutations in the transcription factor SOX18 are responsible for specific cardiovascular defects in humans and mice. In order to gain insight into the molecular basis of its action, we identified target genes of SOX18 and analyzed one, MMP7, in detail.SOX18 was expressed in HUVEC using a recombinant adenoviral vector and the altered gene expression profile was analyzed using microarrays. Expression of several regulated candidate SOX18 target genes was verified by real-time PCR. Knock-down of SOX18 using RNA interference was then used to confirm the effect of the transcription factor on selected genes that included the guidance molecules ephrin B2 and semaphorin 3G. One gene, MMP7, was chosen for further analysis, including detailed promoter studies using reporter gene assays, electrophoretic mobility shift analysis and chromatin-immunoprecipitation, revealing that it responds directly to SOX18. Immunohistochemical analysis demonstrated the co-expression of SOX18 and MMP7 in blood vessels of human skin.The identification of MMP7 as a direct SOX18 target gene as well as other potential candidates including guidance molecules provides a molecular basis for the proposed function of this transcription factor in the regulation of vessel formation

    The effects of long-term saturated fat enriched diets on the brain lipidome

    Get PDF
    The brain is highly enriched in lipids, where they influence neurotransmission, synaptic plasticity and inflammation. Non-pathological modulation of the brain lipidome has not been previously reported and few studies have investigated the interplay between plasma lipid homeostasis relative to cerebral lipids. This study explored whether changes in plasma lipids induced by chronic consumption of a well-tolerated diet enriched in saturated fatty acids (SFA) was associated with parallel changes in cerebral lipid homeostasis. Male C57Bl/6 mice were fed regular chow or the SFA diet for six months. Plasma, hippocampus (HPF) and cerebral cortex (CTX) lipids were analysed by LC-ESI-MS/MS. A total of 348 lipid species were determined, comprising 25 lipid classes. The general abundance of HPF and CTX lipids was comparable in SFA fed mice versus controls, despite substantial differences in plasma lipid-class abundance. However, significant differences in 50 specific lipid species were identified as a consequence of SFA treatment, restricted to phosphatidylcholine (PC), phosphatidylethanolamine (PE), alkyl-PC, alkenyl-PC, alkyl-PE, alkenyl-PE, cholesterol ester (CE), diacylglycerol (DG), phosphatidylinositol (PI) and phosphatidylserine (PS) classes. Partial least squares regression of the HPF/CTX lipidome versus plasma lipidome revealed the plasma lipidome could account for a substantial proportion of variation. The findings demonstrate that cerebral abundance of specific lipid species is strongly associated with plasma lipid homeostasis

    Correlating Global Gene Regulation to Angiogenesis in the Developing Chick Extra-Embryonic Vascular System

    Get PDF
    International audienceBACKGROUND: Formation of blood vessels requires the concerted regulation of an unknown number of genes in a spatial-, time- and dosage-dependent manner. Determining genes, which drive vascular maturation is crucial for the identification of new therapeutic targets against pathological angiogenesis. METHOLOGY/PRINCIPAL FINDINGS: We accessed global gene regulation throughout maturation of the chick chorio-allantoic membrane (CAM), a highly vascularized tissue, using pan genomic microarrays. Seven percent of analyzed genes showed a significant change in expression (>2-fold, FDR<5%) with a peak occurring from E7 to E10, when key morphogenetic and angiogenic genes such as BMP4, SMO, HOXA3, EPAS1 and FGFR2 were upregulated, reflecting the state of an activated endothelium. At later stages, a general decrease in gene expression occurs, including genes encoding mitotic factors or angiogenic mediators such as CYR61, EPAS1, MDK and MYC. We identified putative human orthologs for 77% of significantly regulated genes and determined endothelial cell enrichment for 20% of the orthologs in silico. Vascular expression of several genes including ENC1, FSTL1, JAM2, LDB2, LIMS1, PARVB, PDE3A, PRCP, PTRF and ST6GAL1 was demonstrated by in situ hybridization. Up to 9% of the CAM genes were also overexpressed in human organs with related functions, such as placenta and lung or the thyroid. 21-66% of CAM genes enriched in endothelial cells were deregulated in several human cancer types (P<.0001). Interfering with PARVB (encoding parvin, beta) function profoundly changed human endothelial cell shape, motility and tubulogenesis, suggesting an important role of this gene in the angiogenic process. CONCLUSIONS/SIGNIFICANCE: Our study underlines the complexity of gene regulation in a highly vascularized organ during development. We identified a restricted number of novel genes enriched in the endothelium of different species and tissues, which may play crucial roles in normal and pathological angiogenesis

    The Pierre Auger Observatory Open Data

    Full text link
    The Pierre Auger Collaboration has embraced the concept of open access to their research data since its foundation, with the aim of giving access to the widest possible community. A gradual process of release began as early as 2007 when 1% of the cosmic-ray data was made public, along with 100% of the space-weather information. In February 2021, a portal was released containing 10% of cosmic-ray data collected from 2004 to 2018, during Phase I of the Observatory. The Portal included detailed documentation about the detection and reconstruction procedures, analysis codes that can be easily used and modified and, additionally, visualization tools. Since then the Portal has been updated and extended. In 2023, a catalog of the 100 highest-energy cosmic-ray events examined in depth has been included. A specific section dedicated to educational use has been developed with the expectation that these data will be explored by a wide and diverse community including professional and citizen-scientists, and used for educational and outreach initiatives. This paper describes the context, the spirit and the technical implementation of the release of data by the largest cosmic-ray detector ever built, and anticipates its future developments.Comment: 19 pages, 8 figure
    corecore