60 research outputs found

    Specialized Genetic Algorithm Based Simulation Tool Designed For Malware Evolution Forecasting

    Get PDF
    From the security point of view malware evolution forecasting is very important, since it provides an opportunity to predict malware epidemic outbreaks, develop effective countermeasure techniques and evaluate information security level. Genetic algorithm approach for mobile malware evolution forecasting already proved its effectiveness. There exists a number of simulation tools based on the Genetic algorithms, that could be used for malware forecasting, but their main disadvantages from the user’s point of view is that they are too complicated and can not fully represent the security entity parameter set. In this article we describe the specialized evolution forecasting simulation tool developed for security entities, such as different types of malware, which is capable of providing intuitive graphical interface for users and ensure high calculation performance. Tool applicability for the evolution forecasting tasks is proved by providing mobile malware evolution forecasting results and comparing them with the results we obtained in 2010 by means of MATLAB

    Evolutionary Algorithms Application Analysis in Biometric Systems

    Get PDF
    Wide usage of biometric information for person identity verification purposes, terrorist acts prevention measures and authenticationprocess simplification in computer systems has raised significant attention to reliability and efficiency of biometricsystems. Modern biometric systems still face many reliability and efficiency related issues such as reference databasesearch speed, errors while recognizing of biometric information or automating biometric feature extraction. Current scientificinvestigations show that application of evolutionary algorithms may significantly improve biometric systems. In thisarticle we provide a comprehensive review of main scientific research done in sphere of evolutionary algorithm applicationfor biometric system parameter improvement

    Content Based Model Transformations: Solutions to Existing Issues with Application in Information Security

    Get PDF
    Model-Driven Engineering uses models in various stages of the software engineering. To reduce the cost of modelling and production, models are reused by transforming. Therefore the accuracy of model transformations plays a key role in ensuring the quality of the process. However, problems exist when trying to transform a very abstract and content dependent model. This paper describes the issues arising from such transformations. Solutions to solve problems in content based model transformation are proposed as well. The usage of proposed solutions allowing realization of semi-automatic transformations was integrated into a tool, designed for OPC/XML drawing file transformations to CySeMoL models. The accuracy of transformations in this tool has been analyzed and presented in this paper to acquire data on the proposed solutions influence to the accuracy in content based model transformation

    Raising effectiveness of access control systems by applying multi-criteria decision analysis: part 1 – problem definition

    Get PDF
    Currently, control of access to information and physical resources has become extremely important. Numerous methods and solutions for architecture of systems aimed at controlling physical access are available; however, there is little information about application of Multi-Criteria Decision Analysis methods when evaluating separate logical components, needed for the design of access control systems and their interconnection in the final architecture.This paper is the first part of a two-part article, discussing application of multi-criteria decision making for architecture of access control systems. The first part defines the problem and discusses the possibility to use Multi Criteria Decision Making techniques when designing access control systems, including risk analysis for specific criteria and practical application of the developed model. In the second part, the possible solution model will be presented

    Diffusion-induced vortex filament instability in 3-dimensional excitable media

    Full text link
    We studied the stability of linear vortex filaments in 3-dimensional (3D) excitable media, using both analytical and numerical methods. We found an intrinsic 3D instability of vortex filaments that is diffusion-induced, and is due to the slower diffusion of the inhibitor. This instability can result either in a single helical filament or in chaotic scroll breakup, depending on the specific kinetic model. When the 2-dimensional dynamics were in the chaotic regime, filament instability occurred via on-off intermittency, a failure of chaos synchronization in the third dimension.Comment: 5 pages, 5 figures, to appear in PRL (September, 1999

    Control of a novel chaotic fractional order system using a state feedback technique

    Get PDF
    We consider a new fractional order chaotic system displaying an interesting behavior. A necessary condition for the system to remain chaotic is derived. It is found that chaos exists in the system with order less than three. Using the Routh-Hurwitz and the Matignon stability criteria, we analyze the novel chaotic fractional order system and propose a control methodology that is better than the nonlinear counterparts available in the literature, in the sense of simplicity of implementation and analysis. A scalar control input that excites only one of the states is proposed, and sufficient conditions for the controller gain to stabilize the unstable equilibrium points derived. Numerical simulations confirm the theoretical analysis. © 2013 Elsevier Ltd. All rights reserved
    corecore