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We consider a new fractional order chaotic system displaying an interesting behavior. A necessary con-
dition for the system to remain chaotic is derived. It is found that chaos exists in the system with order
less than three. Using the Routh-Hurwitz and the Matignon stability criteria, we analyze the novel cha-
otic fractional order system and propose a control methodology that is better than the nonlinear coun-
terparts available in the literature, in the sense of simplicity of implementation and analysis. A scalar
control input that excites only one of the states is proposed, and sufficient conditions for the controller
gain to stabilize the unstable equilibrium points derived. Numerical simulations confirm the theoretical
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1. Introduction

Fractional calculus has been known since the early 17th century
[1]. It has been extensively applied in many fields, with an over-
whelming growth of applications during the last three decades.
Examples abound in physics [2], engineering [3], mathematical
biology [4], finance [5], life sciences [6], and optimal control [7].
This is due to the fact that, in many applications, approaches based
on fractional derivatives establish far superior models of engineer-
ing systems than the approaches based on ordinary derivatives [8].
As mentioned in [1], there is no field that has remained untouched
by fractional derivatives.

Historically, the lack of a physical interpretation of fractional
derivatives has been acknowledged at the first international con-
ference on the fractional calculus in New Haven (USA), in 1974,
by including it in the list of open problems [9]. The question was
not answered, and therefore repeated at the subsequent confer-
ences at the University of Strathclyde (UK) in 1984 [10] and at
the Nihon University (Tokyo, Japan) in 1989 [11]. The round-table
discussion at the conference on transform methods and special
functions in Varna, in 1996, showed that the problem was still un-
solved [12]. Since then, the geometric and physical interpretation
of fractional derivatives has been studied by several authors
[13,14]. An interesting physical discussion about initial conditions
of fractional order systems is reported in [15], and their role in con-
trol theory is addressed in [16] for Caputo fractional derivatives,
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and in [17] for Riemann-Liouville fractional derivatives. Relation
between fractional integrals and derivatives and fractal geometry,
showing that for some complex systems substitution of integer-or-
der derivatives by fractional ones results in more accurate and
superior models, has received special attention [18,19].

Chaos is an interesting phenomenon in nonlinear dynamical
systems that has been developed and thoroughly studied over
the past two decades. The reader interested in applications of
chaos in medicine and biology, where fractional calculus has initi-
ated its success and activity in engineering applications, is referred
to [20,21]. A chaotic system is a nonlinear deterministic system
that displays complex, noisy-like and unpredictable behavior. The
sensitive dependence on the initial conditions, and the system
parameter variation, is a prominent characteristic of chaotic
behavior. Here we consider a fractional order chaotic system. The
corresponding integer-order system has a chaotic behavior for a
wide range of parameters. Such integer-order dynamical system
is a reduced model for a physical system. When such system is
implemented using physical electronic devices, the environment
effects (aging of the elements, temperature, inaccurate values,
and so on) on the elements appear as a different behavior so that
the response predicted by the model does not resemble the actual
system. Indeed, for such chaotic systems the super sensitivity of
the values of the elements to tiny changes, cannot be considered
in the dynamical equations. The main reason is related to the frac-
tal or holed basin of the invariant set of the system. In other words,
some trace of the system trajectories are seen in the observed coor-
dinate (phase plane) and some of them lie in the unseen region
that cannot be handled by the classical nonlinear ODE model. For
this reason, the fractional order system is more appropriate than
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the classical one [9-13,18,19]. This happens to be a frequent situ-
ation: for most physical systems which exhibit chaotic behavior,
the invariant set is not an integer-order dimensional object, and
the basin of the trajectories in the phase space is a strange attractor
field whose Lyapunov dimensions are non-integer. The fractional
order operators allow to describe the observed behavior by an
appropriate kernel in the integral. This kernel can be treated as a
weighting factor that generates a new response using existing vec-
tor fields.

The study of fractional order dynamical systems has attracted
an increasing attention in recent years due to their great promise
as a valuable tool in the modeling of many phenomena [22]. As a
matter of fact, real world processes generally or most likely are
fractional order systems [23]. It has been found that fractional or-
der systems possess memory and display more sophisticated
dynamics when compared to their integer order counterparts,
which is of great significance in secure communications. On the
other hand, due to their potential applications in laser physics,
chemical reactors, secure communications and economics, a new
direction of chaos research has emerged in the past two decades
to address the more challenging problem of chaos synchronization
and control [24-27]. Recent papers study the control and synchro-
nization of chaotic systems in both integer and fractional order
cases, applying various control methodologies: nonlinear control
[28,29], adaptive control [30,31], robust control [32], fuzzy control
[33], and active control [34]. The main problem in applying such
control methodologies for taming chaos is often their complexity
in implementation. In this paper we propose a simple linear con-
trol mechanism, based on the well-known Routh-Hurwitz stability
criterion, for a fractional order dynamical system. The system
shows very rich nonlinear dynamics, including chaos and period
doubling bifurcations. A controller is proposed, and both analysis
and design are studied. We show that a single input can control
the very complex system. This makes our results simpler than
the conventional nonlinear methods available in the literature
and more feasible to implement.

The rest of the manuscript is organized as follows. Section 2
briefly presents the necessary fractional calculus background. In
Section 3 we recall the stability criteria that are used in our subse-
quent analysis and design. Description of an interesting system is
presented in Section 4, while the new results are given in Section 5,
where we illustrate our control methodology for taming the frac-
tional order chaotic system corresponding to the one of Section 4.
Conclusions and future directions of research are given in
Section 6.

2. Fractional calculus background

In this section some necessary mathematical background is pre-
sented. For more details see the books [35-39].

Definition 1. (see, e.g., [40]) The (left) fractional integral of x of
order q,q € R*, is defined by

D IX(t) = ﬁ / t(r —5)77'x(s) ds,

where I'(q) = [;° e?z9-'dz is the Gamma function.

Definition 2. (see, e.g., [29]) The (left) fractional derivative of x of
order q,q € R*, in the sense of Riemann-Liouville, is defined by

mo ot
1 d / (t —s)™ 9 x(s)ds,

RLNq . pm p-(m-q) — i
a thx(t) T D ﬂDt X(t) - F(m _ q) dtm

where m € 7" is such that m — 1 <gq<m.

Theorem 3 (see, e.g, [41]). For the fractional Riemann-Liouville
derivative and integral one has:

- L{D Xt} = 579X(s);

. limg_moD;%(t) = D™"x(t),q > 0,m € Z*;
RLDqC:ﬂ.
0™t ra-q

S-DFoD, x(t) = x(t),q € R™;
. L{EDIx(6)} = sTX(s) — Ypg s* - BDI*x(0),m —1 < g <m,m
AN

Gs W s

where £ denotes the Laplace transform, ¢ a constant, and D™ the
m-folded integral.

We note that the Riemann-Liouville differentiation of a con-
stant is not zero (item 3 of Theorem 3); while its Laplace transform
needs fractional derivatives of the function in initial time (item 5 of
Theorem 3). To overcome these “imperfections”, the Caputo frac-
tional derivative has been introduced.

Definition 4 (see, e.g,, [29]). The (left) fractional derivative of x of
order q,q € R", in the sense of Caputo, is defined by

1 ot
cna ._ RLp—(m=q)pym _ _ ym=q-1,(m)

EDIX(0) = D" DX(0) = / (€ — 5)™ 9 1xm)(5)ds;,
where m € Z* is such that m — 1 < q<m, D™ is the standard differ-
ential operator of order m.

Theorem 5 (see, e.g., [30]). For the fractional Caputo derivative one
has:

1. §D{9c = 0;

2. 6D x(t) = §*D oD Ix(t) = x(),0 < g < 1;

3. £{DIx(t)} = s9X(s) — Ypo st kM0, m -1 <g<mme
7,

where ¢ denotes a constant and L the Laplace transform.
In the next section we study some stability tests for fractional
order systems.

3. Stability criteria

A fractional order dynamical system is usually described by

{gD?x(t)zf(x(r),t), m-1l<q<m mez", t>0, a

[BDkx(t)]|,o =Xk, k=0,....m—1,

where x(t) € R" is the vector state at time t,f: R" x R — R" the
nonlinear vector field, and g =(qy, ..., g,)" the differentiation order
vector. If g;=¢;=---=q,=:2, we call (1) a commensurate frac-
tional order dynamical system; otherwise, (1) is said to be incom-
mensurate. The sum of the orders of all involved derivatives in Eq.
(1), ie,, 31,q; is called the effective dimension of Eq. (1) [42].
The size of vector x(t) in state space form (1), i.e., n, is called the in-
ner dimension of system (1) [43].

Theorem 6 (see [33]). The commensurate order system

6D7x(1) = Ax(t),  x(0) = Xo, (2)

with 0 < o < 1,x(t) € R", and A € R™", is asymptotically stable if, and
only if, |arg ()| > % for all eigenvalues 7 of A. Moreover, system (2) is
stable if, and only if, |arg (4)| = aZ for all eigenvalues /. of A, with
those critical eigenvalues satisfying |arg (1)| = o5 having geometric
multiplicity of one.



A. Razminia, D.F.M. Torres/Mechatronics 23 (2013) 755-763 757

Theorem 7 (see [44]). Consider the following linear fractional order
system:

§DIx(t) = AX(t), X(0) = o, 3)
where x(t) € R®,A € R¥", and g = (q1,...,4,)",0 < ¢; < 1,¢; = @ and
ged (n, dj)=1,i=1,..., n. If M is the least common multiple of the
denominators d;, i=1, ..., n, then the zero solution of (3) is globally
asymptotically stable in the Lyapunov sense if all roots A of equation

A(%) = det (diag (M) —A) =0 4)

satisfy |arg (2)| > .

Theorem 8 (see [45]). Let Q = (x*, y*, z*) be an equilibrium solution of
(1)whenn=3and 0< q; =q>=q3=:o < 1; and the eigenvalues of the
equilibrium point Q for the Jacobian matrix | := :)l{( be given by the

polynomial A(2)= )3 + a2 +a» +az = 0 with discriminant
D(4) = 18a,a,as3 + (a1a,)* — 4as(a,)® — 4(a,)* — 27(as)*. (5)
The following holds:

(i) If D(4) > 0, then a necessary and sufficient condition for the
equilibrium point Q to be locally asymptotically stable is
a, >0, a3>0, a;a, —as>0.

(ii) If D(4)<0 and a; =0, a; >0, a3 > 0, then Q is locally
asymptotically  stable for a<Z However, if
D(4) < 0,a; < 0,a; < 0,0 > 3, then all roots of Eq. (5) satisfy
the condition |arg(2)| < oZ.

(iii) If D(4)<0, a;>0, a>0, a;a, —az=0, then Q is locally
asymptotically stable for all o € (0,1).

(iv) A necessary condition for the equilibrium point Q to be
locally asymptotically stable is as > 0.

(v) If the conditions D(4) <0, a; >0, a, > 0, a; a, — as =0 are sat-
isfied, then the equilibrium point Q is not locally asymptot-
ically stable for or = 1.

4. An interesting system

In [46] the following three-dimensional smooth system is pro-
posed and investigated:

X y —ax+ byz
y]|=| y-x+z |, (6)
Z dxy — hz
where [x(t),y(t),z(t)]" € R? is the state vector, and a, b, ¢, d, and h are
some positive constants. The system was shown to be chaotic in a
wide parameter range, and to have an interesting complex dynamical
behavior that varies according with the values of the parameters a, b,
¢,d,and h. The very rich nonlinear dynamics include chaos and period
doubling bifurcations. In particular, the system generates a two-
scroll chaotic attractor for (q, b, ¢, d, h) = (3,2.7,4.7,2,9).

Chaos may be seen in many real-life nonlinear systems. About
10 years ago, several experimental and theoretical studies have
been done to depict the chaotic behavior in various electronic sys-
tems: nonlinear circuits [47], secure communications [48,49], lasers
[50], and Colpitts oscillators [51]. The system (6) is particularly rel-
evant in mechatronics, where it can be used as a carrier producer. In-
deed, because of its wide range chaoticity, one of its important
applications is in secure communication systems. In such a system,
a chaotic carrier is used to transmit the message signal over a chan-
nel. The main motivation for employing such carriersis: (i) complex-
ity of the carrier, which increases the security of the modulated
signal; (ii) inherent orthonormality of the chaotic signals, avoiding
the necessity to use in-phase local oscillators as often done in tele-

communication systems in order to demodulate the original signal
at the receiver; (iii) wide band signal, which permits the carrier to
transmit a wide band message over a noisy channel. Motivated by
the interesting behavior of (6) obtained in [46], our main goal is to
investigate the chaotic dynamics of the corresponding fractional
system. This is done in the next section.

5. Main results

Consider a 3D autonomous fractional system

6DIx(t) = f(x(r)), )

where q=(q1, g2, g3)' is the fractional order of differentiation,

x(t) € R is the state vector, and f : R* — R? is the nonlinear vector
field. Let Q = (x;, x3, x5) be an equilibrium of the system (7), i.e,, let
flQ) = 0. We say that Q is a saddle point for (7) if the eigenvalues of
the Jacobian matrix J = g—{( evaluated at Q are a and b £j ¢, where
ab <0 and c # 0. A saddle point Q is called a saddle point of index 1
ifa>0and b<0, and it is called a saddle point of index 2 if a<0
and b > 0. In chaotic systems of Shil'nikov type, scrolls in a chaotic
attractor are generated only around the saddle points of index 2.
Moreover, saddle points of index 1 are responsible only for connect-
ing scrolls [52].

5.1. System description

We are interested in the particular case of (7) that corresponds
to the commensurate fractional order version of (6). For that we
substitute the standard/integer order derivatives in (6) by Caputo
fractional derivatives of order o € (0,1):

SDxx y—ax+byz
Dy | =| ovy—xz+z |. (8)
$D¥z dxy — hz

System (8) can be used to model several mechatronic systems.
One possible application is to model the nonlinear dynamics of a
rotor-bearing system with the purpose of diagnosing malfunctions
and effectively improve the dynamic characteristics of the rotor
system. Chu and Zhang analyzed the bifurcation and chaotic mo-
tion of a rub-impact rotor system. They found three different
routes to chaos with an increasing rotating speed [53]. Later, Chu
observed very rich forms of periodic and chaotic vibrations
through experimental verification. These results are of great
importance to the fault diagnosis of the rub-impact problem [54].
Ehrich studies the bifurcation of a bearing-rotor system, identify-
ing a sub-harmonic vibration phenomenon in a rotor dynamic sys-
tem [55]. Goldman and Muszynska analyze the chaotic behavior of
a rub-impact rotor using numerical emulation and simple experi-
mental verification. They conclude that the rub can lead to higher
order harmonics, sub-harmonic fractional frequencies, or to cha-
otic vibrations [56]. Lin et al. analyze the nonlinear behavior of
rub-related vibration in rotating machinery: the effects of the
rotating speed, clearance, damping factors, friction coefficients,
and boundary stiffness are investigated [57]. Our system (8) can
also be regarded as a model for a DC-motor with chaotic behavior
(self-sustained oscillations according to backlash and dead-zone of
the gears) [58]. A schematic diagram of a DC drive and its circuits,
with separate excitation and controller with hysteresis, can be
found in [58, Fig. 1]. The states of such system are the current i,
in the motor armature circuit; the current i in the excitation coil;
and the rotor angular speed w,. This real life system can be de-
scribed by (8), after normalization and rescale according to the
parameters and control signals of the circuit, with the correspon-
dence x & wy, y < i and z & i,



758 A. Razminia, D.F.M. Torres/ Mechatronics 23 (2013) 755-763

To find the equilibria of system (8), it is enough to equate the
right-hand side of (8) to zero: y —ax+byz=0, cy —xz+z=0,
dxy — hz = 0. One concludes that the system has 5 equilibria:

d Ah({-1T+V1I+A) -1+V1+A

0. <d+f h< 1—\/1+A'> —1—\/1+A‘)
3 = ’ )

2d b\ d+vVA 2b
0, — d—vVA h(-1+VT+A\ -1+VT+T
“\ 2d b\ d-vA ) 2b ’
C(d=VA h[-1-VTI+A\ -1-VT+T
G=\"20 b d—vA )’ 2b ’

9)
where A = d* + 4chd, A = 2 (d + 2ch + /4), and I' = 28 (d + 2ch—
V/4). The Jacobian matrix for (8), evaluated in an equlhbrlum point
Q= (x* y*, %), is given by

-a 1+bz" by
J=| -z c 1-x
dy” dx’ —h

Our first result gives a necessary condition on the fractional or-
der of differentiation «, for chaos to occur.

Theorem 9. [Necessary condition for occurrence of a chaotic attractor
in the fractional order system (8)] If the fractional order system (8)
exhibits a chaotic attractor, then

o> % arctan (‘II?; 83‘) (10)

for any eigenvalue /. of Q;in (9),i=1, ... 5.

Proof. Assume that the 3D fractional system (8) displays a chaotic
attractor. For every scroll existing in the chaotic attractor, the system
has a saddle point of index 2 encircled by its respective scroll. Sup-
pose that Qis the set of equilibrium points of the system surrounded
by scrolls. A necessary condition for the fractional order system (8)
to exhibit a chaotic attractor is instability of the equilibrium points
in Q [59]. Otherwise, one of these equilibrium points becomes
asymptotically stable and attracts the nearby trajectories. According
to (4), this necessary condition is mathematically equivalent to

Time (s)

0 2000 4000 6000 8000 10000

S~ min{jarg ()]} > 0, (11)
where the J; are the roots of det(diag (2 %2 ;M%) — J|,) = 0 for
all Q € Q. Condition (10) follows immediately from (11). O

The nature of the equilibria (9) of (8) may be determined using
the corresponding eigenvalues /. The following proposition lists
the eigenvalues of each equilibrium, when the parameters are se-
lected in agreement with Section 4.

Proposition 10. Consider the fractional system (8) of commensurate
order o € (0,1), when the five parameters are selected to be (a, b, c, d,
h)=(3,2.7,4.7,2,9). Then, the eigenvalues /A for each equilibrium Q; in
(9),i=1,...,5, are given as follows.

(i) Eigenvalues of Q;: —9, — 3 and 4.7.

(ii) Eigenvalues of Q: —11.0247 and 1.8623 +j 6.6831.
(iii) Eigenvalues of Q3: —11.7856 and 2.2428 +j 6.8580.
(iv) Eigenvalues of Q4: —10.7669 and 1.7335 +j 6.0024.
(v) Eigenvalues of Qs: —11.6813 and 2.1906 +j 6.1881.

Proof. Follows by direct computations. O

Corollary 11. For the fractional system (8) with (a, b, c d,
h)=(3,2.7,4.7,2,9), the equilibria Q, Qs, Q4 and Qs are saddle points
of index 2.

We conclude that if there are some chaotic attractors for (a, b, c,
d, h)=(3,2.7,4.7,2,9), they are located around the equilibria Q,, Qs,
Q4, Qs. Examining (10) for these equilibria, we obtain: o > 0.8270
for Q; o> 0.7988 for Q3; o> 0.8210 for Q4; and o > 0.7834 for Qs.
Therefore, by choosing « > 0.8270, we ensure that all the eigen-
values remain in the instability region.

An efficient method for solving fractional order differential
equations is the predictor-corrector scheme or, more precisely,
the PECE (Predict, Evaluate, Correct, Evaluate) technique that has
been investigated in [60,61]. It represents a generalization of the
Adams-Bashforth-Moulton algorithm. We use the PECE scheme
throughout the paper for numerical simulations.

In Figs. 1-5, the initial conditions were selected as (xo, Yo,
Zo) =(5,-2,1), and only the fractional order of differentiation «
changes. When o — 1, our numerical results are in agreement with

y -10 0 x

Fig. 1. Chaotic attractor of fractional system (8) witha=3,b=2.7,c=4.7,d =2, h=9, and initial conditions (xo, Yo, Zo) = (5, — 2,1), when o — 1.
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-20,

Fig. 2. Numerical results for the fractional order system (8) with a=3, b=2.7, c=4.7, d=2, h=9, and initial conditions (xo, yo, Zo) = (5,—2,1), when the fractional order is

o =0.90.

20 T T T T

Time (s)

0 2000 4000 6000 8000 10000

Fig. 3. Numerical results for the fractional order system (8) with a=3, b=2.7, c=4.7, d=2, h=9, and initial conditions (xo, yo, Zo) = (5,—2,1), when the fractional order is

o= 0.86.

[46]. The numerical simulation of the chaotic attractor for o — 1 is
depicted in Fig. 1.

In Fig. 2 we illustrate the chaotic behavior of (8) when « = 0.90,
and in Fig. 3, Fig. 4, and Fig. 5, the behavior of (8) is depicted for
o =0.86, o =0.80, and o = 0.77, respectively.

As one can see, in Figs. 4 and 5 chaos has diminished, and the
trajectories of the corresponding fractional system converge to
their equilibria.

5.2. Control of the fractional order chaotic system

Consider the fractional order chaotic system (8) of commensu-
rate order o € (0,1). In order to control the system, i.e., force the
trajectories to go to the equilibria, we add a control parameter
u = (uy, Uy, us) as follows:

SDxx Yy —ax+ byz Uy
SDxy | =| cy—xz+z |+ | uz (12)
$D?z dxy — hz Us

One of the simplest controllers is the state feedback controller,
which has a simple structure and is easy to implement. Let us take
the structure of the controller as a state feedback, as follows:

U = —ky(x —x*),

U =~k (y —y),
us = —ks3(z—2z").

In this way (12) reduces to
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Fig. 4. Numerical results for the fractional order system (8) with a=3, b=2.7, c=4.7, d =2, h=9, and initial conditions (X, yo, o) = (5,—2,1), when the fractional order is

o =0.80.

1 1 e

0 0.5 1 1.5 2
Time (s) x10

X

y
o

10

o

-5

-10
0

5
y -10 0 X

Fig. 5. Numerical results for the fractional order system (8) with a=3, b=2.7, c=4.7, d =2, h=9, and initial conditions (X, yo, o) = (5,—2,1), when the fractional order is

%=0.77.
ED#x y—ax+byz —k(x —x)
Dy |=| o-xtz-kiy-y) | (13)
$D?z dxy —hz — k3(z—z)

Assume that we want to stabilize one of the equilibria, e.g., Q>
(using a similar approach, we can easily design a control law to sta-
bilize the other unstable equilibria). Next theorem shows that by
choosing appropriate values for gain k;, we can control the frac-
tional order system (13).

Theorem 12. The trajectories of the fractional controlled system (13)
witha=3,b=2.7,¢c=47,d=2, and h=9, are driven to the unstable
equilibrium point Q,=(5.1260,2.0794,2.3687) for all oo <(0,1), if
ky=ks=0and — 7.30<k;<26.53.

Proof. Computing the Jacobian matrix in the equilibrium point
Q = (x*,y*,z), we obtain

—a—k; 1+bz by”
J= -z c—k, —x+1
dy* dx" —h—k;

Constituting the characteristic equation A(4) by

i+a+k, —1-bz" —by
A(2) =det(Al —]) =det z J—C+ky, x -1 =0,
—dy” —dx"  J+h+k;

we have
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AQ) = (L+a+k)[(A—c+k)(A+h+ks) +dx (x —1)]
+(1+bz)z'(A+h+ks) +dy' (x —1)]
—by' [(—dx'Z") +dy" (4 — c + k)]

=P +(a+ki+ky—c+h+k)?+(dx'(x—1)+(a

+ki)(ka —c+h+ks)+ (ka —c)(h+ks) + (1+bz")z*
—bdy?)i+ (a+ ki) (dx' (x = 1) + (ky — ¢)(h + ks))
+ (1 +bZ)(dy' (x = 1)+ 2z (h+ ks)) — by"(—dx'Z"
+dy'(—c+ky))

—0. (14)
Based on Theorem 8, if we choose ky, k, and k3 such that D(A) <0,
a; >0, a; >0 and a,a; — as =0, then Q = (x*, y*, z*) is locally asymp-
totically stable for all o € (0,1), where
D(A) =18(a+ ki +ky —c+h+k3) x (dx"(x* — 1) + (a+ k1) (k2

—Cc+h+ks)+ (ky —c)(h+ks) + (1 +bz")z — bdy™) x ((a
+k)(dx' (x* = 1)+ (ky —c)(h+k3)) + (1

+bz")(dy* (x* — 1) +z*(h + k3)) — by (—dx"z" + dy"(—c
+k)))+((@+ ki +ky —c+h+k3)(dx (x — 1) + (a+ k)
x (ky —c+h+ks)+ (ky—c)(h+ks) + (1 +bz")z"

- bdy*z))2 —4((a+ky)(dx (x = 1) + (ky —c)(h + k3)) + (1
+bZ")(dy (x* = 1) +z'(h+ k3)) — by" (—dx'z" + dy*(—c
+k)))(a@+ki +ky —c+h+ks)® —4@dx (x —1) + (a+ ki)
x (ky —c+h+ks)+ (ky —c)(h+ks) + (1+bz")z"
—bdy?)* = 27((a+ ki) (dx"(x* — 1) + (ks — ©)(h + ks)) + (1
+bZ")(dy (x* — 1) +z°(h + k3)) — by" (—dx'z" + dy*(—c
+k2)))’

and the q;, i=1,2,3, are found from the coefficients of (14). For the
parameters that generate the 2-scroll attractors, i.e., a=3, b=2.7,
c=4.7, d=2, h=9, we have Q,=(x* y* z")=(5.1260,2.0794,
2.3687). Thus, (14) reduces to

control applied

(=

A(}) = )»3 + (73 + k1 + k2 + k3)}v2 + (k]k2 + k2k3 + k] k3
+21.8733)4 + 530.6404 — 0.0002k; + 3.6509k,
+ 34177’(3 + 3]{2’(3 + 9’(] k2 — 4.7]{1 k3 + k] kzkg.

If we choose k, = k3 =0, then

A(2) =22 + (7.3 + k)72 +21.8733 4 + 530.6404 — 0.0002k; .

For this characteristic polynomial we have:

D(4) = 18(7.3 + k;)(21.8733)(530.6404 — 0.0002k) + ((7.3
+k1)21.8733) — 4(530.6404 — 0.0002k )(7.3 + k;)*
— 4(21.8733) — 27(530.6404 — 0.0002k ).

The conditions D(A) <0, a; >0, a, > 0 and a;a, — as = 0 are satisfied
for k; € (—7.30, 26.53). O

In Fig. 6 we have chosen k; = 16.96 and the initial conditions to
be (X0, Yo, 20) =(5,2,2). As can be seen from the figure, all states
converge to their equilibria.

In order to get a faster response, one can easily consider the
other two gains (k, and ks3) in the control law. However, this intro-
duces difficulties in the real implementation of the control system.
We also note that in designing the stabilizing controllers, because
we are utilizing the linearized version of the nonlinear system
around its equilibrium, we should select the initial conditions near
the corresponding equilibrium.

6. Conclusions and future work

Chaotic fractional order systems have an inherent potential in
mechatronic applications, particularly in secure telecommunica-
tion systems where the main part of a transmitter-receiver config-
uration is the synchronization between master and slave blocks. In
this article we analyzed the dynamical behavior of a novel frac-
tional order chaotic system. The chaotic system generalizes the re-
cent integer order system introduced in [46]. The local stability of
the equilibria, using the fractional Routh-Hurwitz conditions, was
studied. Furthermore, using Matignon’s stability criteria, the sys-
tem was shown to be chaotic in a wide parameter range, and to
have an interesting complex dynamical behavior that varies

Fig. 6. Numerical results for the controlled system (13) witha=3,b=2.7,c=4.7,d=2,h =9, k; = 16.96, k, = k3 = 0, when the fractional order is o = 0.90 and initial conditions

are (Xo, Yo, Z0) =(5,2,2).
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according with the values of the parameters q, b, ¢, d, and h. The
very rich nonlinear dynamics include chaos and period doubling
bifurcations. Moreover, we derived a lower bound of the fractional
order of differentiation for the system to remain chaotic. Analytical
conditions for linear feedback control have been achieved. Our
analysis is valid in a general format, in which all gains k;, k,, and
ks are considered. However, and despite the complexity and the
wide range of varieties, it has been shown that the system can be
controlled by a single state-feedback controller. This possibility
of stabilizing the system locally using only controller k; provides
a simple and easy way to control the chaos, which can be crucial
in a real implementation. Our state feedback approach can be ap-
plied to various chaotic fractional order systems. In particular,
we claim that the techniques here developed can be used, without
fundamental changes, in the synchronization of two fractional or-
der chaotic systems in a secure telecommunication system. This is
under study and will be addressed elsewhere.

Our state feedback approach for controlling the system is based
on a Routh-Hurwitz analysis and cannot treat constraints on the
actuating signal. To consider such saturation constraints on the
control signal, a performance index should be defined. Minimizing
the index subject to some constraints on the state and control sig-
nals cannot be considered analytically for the method here imple-
mented. A direction for future research is to investigate how one
can obtain a global stabilizing controller. To the best of our knowl-
edge, the global stability of fractional systems is an interesting
open question and available results reduce to those of [62,63].
For different stability concepts than the Lyapunov one adopted in
our work, we refer the reader to [64].
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