18 research outputs found

    Climate and habitat configuration limit range expansion and patterns of dispersal in a non-native lizard

    Get PDF
    Invasive species are one of the main causes of biodiversity loss worldwide. As introduced, populations increase in abundance and geographical range, so does the potential for negative impacts on native communities. As such, there is a need to better understand the processes driving range expansion as species become established in recipient landscapes. Through an investigation into capacity for population growth and range expansion of introduced populations of a non‐native lizard (Podarcis muralis), we aimed to demonstrate how multi‐scale factors influence spatial spread, population growth, and invasion potential in introduced species. We collated location records of P. muralis presence in England, UK through data collected from field surveys and a citizen science campaign. We used these data as input for presence‐background models to predict areas of climate suitability at a national‐scale (5 km resolution), and fine‐scale habitat suitability at the local scale (2 m resolution). We then integrated local models into an individual‐based modeling platform to simulate population dynamics and forecast range expansion for 10 populations in heterogeneous landscapes. National‐scale models indicated climate suitability has restricted the species to the southern parts of the UK, primarily by a latitudinal cline in overwintering conditions. Patterns of population growth and range expansion were related to differences in local landscape configuration and heterogeneity. Growth curves suggest populations could be in the early stages of exponential growth. However, annual rates of range expansion are predicted to be low (5–16 m). We conclude that extensive nationwide range expansion through secondary introduction is likely to be restricted by currently unsuitable climate beyond southern regions of the UK. However, exponential growth of local populations in habitats providing transport pathways is likely to increase opportunities for regional expansion. The broad habitat niche of P. muralis, coupled with configuration of habitat patches in the landscape, allows populations to increase locally with minimal dispersal

    Data underlying publication: Green turtles shape the seascape through grazing patch formation around habitat features: experimental evidence

    No full text
    This dataset contains the data collected from field experiments studying the impact of habitat structure on green turtle density, behavior and grazing impact. In this study, we established large-scale (242m2) and small-scale arrays (9m2) with artificial structures in a a seagrass meadow in The Bahamas. Over time, within the large-scale array, we measured turtle density, turtle grazing behavior and grazing patch development using drone imagery. Additionally we measured Thalassia testudinum seagrass morphology (LAI, cover, shoot density and aboveground biomass) comparing seagrass in the grazing patch within cages and outside cages. To confirm that turtles select structure as foraging site, even at a small-scale, we measured grazing patch development around the structures in the small-scale arrays. </p

    Data underlying publication: Green turtles shape the seascape through grazing patch formation around habitat features: experimental evidence

    No full text
    This dataset contains the data collected from field experiments studying the impact of habitat structure on green turtle density, behavior and grazing impact. In this study, we established large-scale (242m2) and small-scale arrays (9m2) with artificial structures in a a seagrass meadow in The Bahamas. Over time, within the large-scale array, we measured turtle density, turtle grazing behavior and grazing patch development using drone imagery. Additionally we measured Thalassia testudinum seagrass morphology (LAI, cover, shoot density and aboveground biomass) comparing seagrass in the grazing patch within cages and outside cages. To confirm that turtles select structure as foraging site, even at a small-scale, we measured grazing patch development around the structures in the small-scale arrays. </p

    Long-Term Socio-Ecological Research in Practice: Lessons from Inter- and Transdisciplinary Research in the Austrian Eisenwurzen

    No full text
    Long-Term Socio-Ecological Research (LTSER) is an inter- and transdisciplinary research field addressing socio-ecological change over time at various spatial and temporal scales. In the Austrian Eisenwurzen region, an LTSER platform was founded in 2004. It has fostered and documented research projects aiming at advancing LTSER scientifically and at providing regional stakeholders with relevant information for sustainable regional development. Since its establishment, a broad range of research activities has been pursued in the region, integrating information from long-term ecological monitoring sites with approaches from social sciences and the humanities, and in cooperation with regional stakeholders. Based on the experiences gained in the Eisenwurzen LTSER platform, this article presents current activities in the heterogeneous field of LTSER, identifying specific (inter-)disciplinary contributions of three research strands of LTSER: long-term ecological research, socio-ecological basic research, and transdisciplinary research. Given the broad array of diverse contributions to LTSER, we argue that the platform has become a relevant “boundary organization,” linking research to its regional non-academic context, and ensuring interdisciplinary exchange among the variety of disciplines. We consider the diversity of LTSER approaches an important resource for future research. Major success criteria of LTSER face specific challenges: (1) existing loose, yet stable networks need to be maintained and extended; (2) continuous generation of and access to relevant data needs to be secured and more data need to be included; and (3) consecutive research projects that have allowed for capacity building in the past may be threatened in the future if national Austrian research funders cease to provide resources

    No saturation in the accumulation of alien species worldwide

    No full text
    Although research on human-mediated exchanges of species has substantially intensified during the last centuries, we know surprisingly little about temporal dynamics of alien species accumulations across regions and taxa. Using a novel database of 45,813 first records of 16,926 established alien species, we show that the annual rate of first records worldwide has increased during the last 200 years, with 37% of all first records reported most recently (1970–2014). Inter-continental and inter-taxonomic variation can be largely attributed to the diaspora of European settlers in the nineteenth century and to the acceleration in trade in the twentieth century. For all taxonomic groups, the increase in numbers of alien species does not show any sign of saturation and most taxa even show increases in the rate of first records over time. This highlights that past efforts to mitigate invasions have not been effective enough to keep up with increasing globalization.© The Author(s) 201

    Biological Invasions in Conservation Planning: A Global Systematic Review

    No full text
    Biological invasions threaten biodiversity in terrestrial, freshwater and marine ecosystems, requiring substantial conservation and management efforts. To examine how the conservation planning literature addresses biological invasions and if planning in the marine environment could benefit from experiences in the freshwater and terrestrial systems, we conducted a global systematic review. Out of 1,149 scientific articles mentioning both “conservation planning” and “alien” or any of its alternative terms, 70 articles met our selection criteria. Most of the studies were related to the terrestrial environment, while only 10% focused on the marine environment. The main conservation targets were species (mostly vertebrates) rather than habitats or ecosystems. Apart from being mentioned, alien species were considered of concern for conservation in only 46% of the cases, while mitigation measures were proposed in only 13% of the cases. The vast majority of the studies (73%) ignored alien species in conservation planning even if their negative impacts were recognized. In 20% of the studies, highly invaded areas were avoided in the planning, while in 6% of the cases such areas were prioritized for conservation. In the latter case, two opposing approaches led to the selection of invaded areas: either alien and native biodiversity were treated equally in setting conservation targets, i.e., alien species were also considered as ecological features requiring protection, or more commonly invaded sites were prioritized for the implementation of management actions to control or eradicate invasive alien species. When the “avoid” approach was followed, in most of the cases highly impacted areas were either excluded or invasive alien species were included in the estimation of a cost function to be minimized. Most of the studies that followed a “protect” or “avoid” approach dealt with terrestrial or freshwater features but in most cases the followed approach could be transferred to the marine environment. Gaps and needs for further research are discussed and we propose an 11-step framework to account for biological invasions into the systematic conservation planning design.© 2018 Mačić, Albano, Almpanidou, Claudet, Corrales, Essl, Evagelopoulos, Giovos, Jimenez, Kark, Marković, Mazaris, ÓlafsdĂłttir, Panayotova, Petović, Rabitsch, Ramdani, Rilov, Tricarico, Vega FernĂĄndez, Sini, Trygonis and Katsanevaki

    Present state of rivers and streams in Japan

    No full text
    corecore