100 research outputs found
Genetic Association of Multiple Sclerosis with the Marker rs391745 near the Endogenous Retroviral Locus HERV-Fc1: Analysis of Disease Subtypes
We have previously described the occurrence of multiple sclerosis (MS) to be associated with human endogenous retroviruses, specifically the X-linked viral locus HERV-Fc1. The aim of this study was to investigate a possible association of the HERV-Fc1 locus with subtypes of MS. MS patients are generally subdivided into three categories: Remitting/Relapsing and Secondary Progressive, which together constitute Bout Onset MS, and Primary Progressive. In this study of 1181 MS patients and 1886 controls we found that Bout Onset MS was associated with the C-allele of the marker rs391745 near the HERV-Fc1 locus (p = 0.003), while primary progressive disease was not. The ability to see genetic differences between subtypes of MS near this gene speaks for the involvement of the virus HERV-Fc1 locus in modifying the disease course of MS
MYO9B polymorphisms in multiple sclerosis
"Single-nucleotide polymorphisms (SNPs) in the 30 region of myosin IXB (MYO9B) gene have recently been reported to associate with different inflammatory or autoimmune diseases. We monitored for the association of MYO9B variants to multiple sclerosis (MS) in four Northern European populations. First, 18 SNPs including 6 SNPs with previous evidence for association to immune disorders, were tested in 730 Finnish MS families, but no linkage or family-based association was observed. To ensure the power to detect variants with a modest effect size, we further analyzed 10 variants in 899 Finnish cases and 1325 controls, and in a total of 1521 cases and 1476 controls from Denmark, Norway and Sweden, but found no association. Our results thereby do not support a major function of the tested MYO9B variants in MS. European Journal of Human Genetics (2009) 17, 840-843; doi: 10.1038/ejhg.2008.251; published online 14 January 2009""Single-nucleotide polymorphisms (SNPs) in the 30 region of myosin IXB (MYO9B) gene have recently been reported to associate with different inflammatory or autoimmune diseases. We monitored for the association of MYO9B variants to multiple sclerosis (MS) in four Northern European populations. First, 18 SNPs including 6 SNPs with previous evidence for association to immune disorders, were tested in 730 Finnish MS families, but no linkage or family-based association was observed. To ensure the power to detect variants with a modest effect size, we further analyzed 10 variants in 899 Finnish cases and 1325 controls, and in a total of 1521 cases and 1476 controls from Denmark, Norway and Sweden, but found no association. Our results thereby do not support a major function of the tested MYO9B variants in MS. European Journal of Human Genetics (2009) 17, 840-843; doi: 10.1038/ejhg.2008.251; published online 14 January 2009""Single-nucleotide polymorphisms (SNPs) in the 30 region of myosin IXB (MYO9B) gene have recently been reported to associate with different inflammatory or autoimmune diseases. We monitored for the association of MYO9B variants to multiple sclerosis (MS) in four Northern European populations. First, 18 SNPs including 6 SNPs with previous evidence for association to immune disorders, were tested in 730 Finnish MS families, but no linkage or family-based association was observed. To ensure the power to detect variants with a modest effect size, we further analyzed 10 variants in 899 Finnish cases and 1325 controls, and in a total of 1521 cases and 1476 controls from Denmark, Norway and Sweden, but found no association. Our results thereby do not support a major function of the tested MYO9B variants in MS. European Journal of Human Genetics (2009) 17, 840-843; doi: 10.1038/ejhg.2008.251; published online 14 January 2009"Peer reviewe
Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.
Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis
The Causal Cascade to Multiple Sclerosis: A Model for MS Pathogenesis
BACKGROUND: MS pathogenesis seems to involve both genetic susceptibility and environmental risk factors. Three sequential factors are implicated in the environmental risk. The first acts near birth, the second acts during childhood, and the third acts long thereafter. Two candidate factors (vitamin D deficiency and Epstein-Barr viral infection) seem well suited to the first two environmental events. METHODOLOGY/PRINCIPAL FINDINGS: A mathematical Model for MS pathogenesis is developed, incorporating these environmental and genetic factors into a causal scheme that can explain some of the recent changes in MS-epidemiology (e.g., increasing disease prevalence, a changing sex-ratio, and regional variations in monozygotic twin concordance rates). CONCLUSIONS/SIGNIFICANCE: This Model suggests that genetic susceptibility is overwhelmingly the most important determinant of MS pathogenesis. Indeed, over 99% of individuals seem genetically incapable of developing MS, regardless of what environmental exposures they experience. Nevertheless, the contribution of specific genes to MS-susceptibility seems only modest. Thus, despite HLA DRB1*1501 being the most consistently identified genetic marker of MS-susceptibility (being present in over 50% of northern MS patient populations), only about 1% of individuals with this allele are even genetically susceptible to getting MS. Moreover, because genetic susceptibility seems so similar throughout North America and Europe, environmental differences principally determine the regional variations in disease characteristics. Additionally, despite 75% of MS-patients being women, men are 60% more likely to be genetically-susceptible than women. Also, men develop MS at lower levels of environmental exposure than women. Nevertheless, women are more responsive to the recent changes in environmental-exposure (whatever these have been). This explains both the changing sex-ratio and the increasing disease prevalence (which has increased by a minimum of 32% in Canada over the past 35 years). As noted, environmental risk seems to result from three sequential components of environmental exposure. The potential importance of this Model for MS pathogenesis is that, if correct, a therapeutic strategy, designed to interrupt one or more of these sequential factors, has the potential to markedly reduce or eliminate disease prevalence in the future
Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility
We analyzed genetic data of 47,429 multiple sclerosis (MS) and 68,374 control subjects and established a reference map of the genetic architecture of MS that includes 200 autosomal susceptibility variants outside the major histocompatibility complex (MHC), one chromosome X variant, and 32 variants within the extended MHC. We used an ensemble of methods to prioritize 551 putative susceptibility genes that implicate multiple innate and adaptive pathways distributed across the cellular components of the immune system. Using expression profiles from purified human microglia, we observed enrichment for MS genes in these brain-resident immune cells, suggesting that these may have a role in targeting an autoimmune process to the central nervous system, although MS is most likely initially triggered by perturbation of peripheral immune responses
A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis
Genome-wide association studies (GWAS) have identified more than 50,000 unique associations with common human traits. While this represents a substantial step forward, establishing the biology underlying these associations has proven extremely difficult. Even determining which cell types and which particular gene(s) are relevant continues to be a challenge. Here, we conduct a cell-specific pathway analysis of the latest GWAS in multiple sclerosis (MS), which had analyzed a total of 47,351 cases and 68,284 healthy controls and found more than 200 non-MHC genome-wide associations. Our analysis identifies pan immune cell as well as cell-specific susceptibility genes in T cells, B cells and monocytes. Finally, genotype-level data from 2,370 patients and 412 controls is used to compute intraindividual and cell-specific susceptibility pathways that offer a biological interpretation of the individual genetic risk to MS. This approach could be adopted in any other complex trait for which genome-wide data is available
A "Candidate-Interactome" Aggregate Analysis of Genome-Wide Association Data in Multiple Sclerosis
Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a “candidate interactome” (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms
A “Candidate-Interactome” Aggregate Analysis of Genome-Wide Association Data in Multiple Sclerosis
Though difficult, the study of gene-environment interactions in multifactorial diseases is crucial for interpreting the relevance of non-heritable factors and prevents from overlooking genetic associations with small but measurable effects. We propose a "candidate interactome" (i.e. a group of genes whose products are known to physically interact with environmental factors that may be relevant for disease pathogenesis) analysis of genome-wide association data in multiple sclerosis. We looked for statistical enrichment of associations among interactomes that, at the current state of knowledge, may be representative of gene-environment interactions of potential, uncertain or unlikely relevance for multiple sclerosis pathogenesis: Epstein-Barr virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, cytomegalovirus, HHV8-Kaposi sarcoma, H1N1-influenza, JC virus, human innate immunity interactome for type I interferon, autoimmune regulator, vitamin D receptor, aryl hydrocarbon receptor and a panel of proteins targeted by 70 innate immune-modulating viral open reading frames from 30 viral species. Interactomes were either obtained from the literature or were manually curated. The P values of all single nucleotide polymorphism mapping to a given interactome were obtained from the last genome-wide association study of the International Multiple Sclerosis Genetics Consortium & the Wellcome Trust Case Control Consortium, 2. The interaction between genotype and Epstein Barr virus emerges as relevant for multiple sclerosis etiology. However, in line with recent data on the coexistence of common and unique strategies used by viruses to perturb the human molecular system, also other viruses have a similar potential, though probably less relevant in epidemiological terms
- …