197 research outputs found
ELFE : an Electron Laboratory for Europe
This paper presents a brief overview of the physics with the 15-30~GeV
continuous beam electron facility proposed by the European community of nuclear
physicists to study the quark and gluon structure of hadrons.Comment: need qcdparis.sty, psfig and 8 eps figures : exclusive_hard_1.eps
exclusive_hard_2.eps exclusive_hard_3.eps hard_bw.eps gpm_slac.eps
inclusif1.eps inclusif2.eps machine.ep
Gluon Spin in the Nucleon
We study the operator description of the gluon spin contribution ()
to the nucleon's spin as it is measured in deep inelastic processes.
can be related to the forward matrix element of a local gluon operator in
gauge. In quark models the nucleon contains ambient color electric and
magnetic fields. The latter are thought to be responsible for spin splittings
among the light baryons. We show that these fields give rise to a significant
{\it negative\/} contribution to at the quark model renormalization
scale, . The non-Abelian character of QCD is responsible for the sign
of . In a generic non-relativistic quark model , in the bag model
. These correspond to
and at .Comment: 12 pages in REVTeX. The paper has been entirely revise
MEMPHYS:A large scale water Cerenkov detector at Fr\'ejus
A water \v{C}erenkov detector project, of megaton scale, to be installed in
the Fr\'ejus underground site and dedicated to nucleon decay, neutrinos from
supernovae, solar and atmospheric neutrinos, as well as neutrinos from a
super-beam and/or a beta-beam coming from CERN, is presented and compared with
competitor projects in Japan and in the USA. The performances of the European
project are discussed, including the possibility to measure the mixing angle
and the CP-violating phase .Comment: 1+33 pages, 14 figures, Expression of Interest of MEMPHYS projec
First electron beam polarization measurements with a Compton polarimeter at Jefferson Laboratory
A Compton polarimeter has been installed in Hall A at Jefferson Laboratory.
This letter reports on the first electron beam polarization measurements
performed during the HAPPEX experiment at an electron energy of 3.3 GeV and an
average current of 40 A. The heart of this device is a Fabry-Perot cavity
which increased the luminosity for Compton scattering in the interaction region
so much that a 1.4% statistical accuracy could be obtained within one hour,
with a 3.3% total error
A photon calorimeter using lead tungstate crystals for the CEBAF Hall A Compton polarimeter
The performances of the calorimeter of the Jlab Hall A Compton Polarimeter
have been measured using the Mainz tagged photon beam.Comment: 13 page
Momentum--dependent nuclear mean fields and collective flow in heavy ion collisions
We use the Boltzmann-Uehling-Uhlenbeck model to simulate the dynamical
evolution of heavy ion collisions and to compare the effects of two
parametrizations of the momentum--dependent nuclear mean field that have
identical properties in cold nuclear matter. We compare with recent data on
nuclear flow, as characterized by transverse momentum distributions and flow
() variables for symmetric and asymmetric systems. We find that the precise
functional dependence of the nuclear mean field on the particle momentum is
important. With our approach, we also confirm that the difference between
symmetric and asymmetric systems can be used to pin down the density and
momentum dependence of the nuclear self consistent one--body potential,
independently. All the data can be reproduced very well with a
momentum--dependent interaction with compressibility K = 210 MeV.Comment: 15 pages in ReVTeX 3.0; 12 postscript figures uuencoded; McGill/94-1
Isotopic composition of fragments in multifragmentation of very large nuclear systems: effects of the chemical equilibrium
Studies on the isospin of fragments resulting from the disassembly of highly
excited large thermal-like nuclear emitting sources, formed in the ^{197}Au +
^{197}Au reaction at 35 MeV/nucleon beam energy, are presented. Two different
decay systems (the quasiprojectile formed in midperipheral reactions and the
unique source coming from the incomplete fusion of projectile and target in the
most central collisions) were considered; these emitting sources have the same
initial N/Z ratio and excitation energy (E^* ~= 5--6 MeV/nucleon), but
different size. Their charge yields and isotopic content of the fragments show
different distributions. It is observed that the neutron content of
intermediate mass fragments increases with the size of the source. These
evidences are consistent with chemical equilibrium reached in the systems. This
fact is confirmed by the analysis with the statistical multifragmentation
model.Comment: 9 pages, 4 ps figure
Contemporary presence of dynamical and statistical production of intermediate mass fragments in midperipheral Ni+Ni collisions at 30 MeV/nucleon
The reaction at 30 MeV/nucleon has been experimentally
investigated at the Superconducting Cyclotron of the INFN Laboratori Nazionali
del Sud. In midperipheral collisions the production of massive fragments
(4Z12), consistent with the statistical fragmentation of the
projectile-like residue and the dynamical formation of a neck, joining
projectile-like and target-like residues, has been observed. The fragments
coming from these different processes differ both in charge distribution and
isotopic composition. In particular it is shown that these mechanisms leading
to fragment production act contemporarily inside the same event.Comment: 9 pages, minor correction
Maximum Azimuthal Anisotropy of Neutrons from Nb-Nb Collisions at 400 AMeV and the Nuclear Equation of State
We measured the first azimuthal distributions of triple--differential cross
sections of neutrons emitted in heavy-ion collisions, and compared their
maximum azimuthal anisotropy ratios with Boltzmann--Uehling--Uhlenbeck (BUU)
calculations with a momentum-dependent interaction. The BUU calculations agree
with the triple- and double-differential cross sections for positive rapidity
neutrons emitted at polar angles from 7 to 27 degrees; however, the maximum
azimuthal anisotropy ratio for these free neutrons is insensitive to the size
of the nuclear incompressibility modulus K characterizing the nuclear matter
equation of state.Comment: Typeset using ReVTeX, with 3 ps figs., uuencoded and appende
- âŠ