23 research outputs found
Recommended from our members
Bacillus subtilis Early Colonization of Arabidopsis thaliana Roots Involves Multiple Chemotaxis Receptors
ABSTRACT Colonization of plant roots by Bacillus subtilis is mutually beneficial to plants and bacteria. Plants can secrete up to 30% of their fixed carbon via root exudates, thereby feeding the bacteria, and in return the associated B. subtilis bacteria provide the plant with many growth-promoting traits. Formation of a biofilm on the root by matrix-producing B. subtilis is a well-established requirement for long-term colonization. However, we observed that cells start forming a biofilm only several hours after motile cells first settle on the plant. We also found that intact chemotaxis machinery is required for early root colonization by B. subtilis and for plant protection. Arabidopsis thaliana root exudates attract B. subtilis in vitro, an activity mediated by the two characterized chemoreceptors, McpB and McpC, as well as by the orphan receptor TlpC. Nonetheless, bacteria lacking these chemoreceptors are still able to colonize the root, suggesting that other chemoreceptors might also play a role in this process. These observations suggest that A. thaliana actively recruits B. subtilis through root-secreted molecules, and our results stress the important roles of B. subtilis chemoreceptors for efficient colonization of plants in natural environments. These results demonstrate a remarkable strategy adapted by beneficial rhizobacteria to utilize carbon-rich root exudates, which may facilitate rhizobacterial colonization and a mutualistic association with the host
Dynamiques théorique et expérimentale des taux de mutations
Mutations are the ultimate source of variation that allow living organisms to adapt through natural selection. Understanding the dynamics of mutation accumulation and how they are biased stands as a keystone to understand evolutionary processes. In this work, I explored these two aspects of mutation accumulation in an evolutionary framework.First, I studied the dynamics of mutation rates over evolutionary time. As mutations may be beneficial, neutral or deleterious, the dynamics of mutation rates will be a function of two opposite driving forces: evolvability or the ability to evolve and genome stability. The resulting dynamics has been widely studied theoretically but experimental studies are scarce and mostly limited to short periods of time.Second, I focused on mutational biases. Previous studies showed that mutation rates might vary within given genomes, as a function for example of both their localization and neighboring nucleotides.All studies from this Ph.D thesis were performed in the context of the long-term evolution experiment which has been started in 1988 by Richard Lenski (Michigan State University, USA). Twelve populations were initiated from a common ancestor strain of Escherichia coli and have been propagated ever since for more than 25 years by daily transfers in fresh medium. Samples were collected and genomes of evolved clones were sequenced at regular time point intervals, allowing both the phenotypic and genomic studies of the mutation rate for more than 50,000 generations.In this study, I showed that mutation rates are highly dynamic: the emergence of hypermutator genotypes is followed by multiple compensation events. I also observed large mutational biases, including the impact of the neighboring nucleotides on resulting aminoacid changes.Les mutations constituent une des principales sources de variation sur lesquelles agit la sélection naturelle, permettant ainsi l'évolution des organismes vivants. Comprendre la dynamique d'accumulation des mutations, ainsi que les biais pouvant influer leur apparition, est donc indispensable pour mieux appréhender les processus évolutifs. Dans cette thèse, j'ai exploré ces deux aspects dans un contexte évolutif.Dans une première partie, je me suis intéressée à la dynamique des taux de mutation au cours du temps évolutif. En effet, les mutations pouvant être bénéfiques, neutres ou délétères, la dynamique des taux de mutation est régie par deux forces opposées que sont l'adaptabilité (la capacité à évoluer) et la stabilité du génome. Cette dynamique a été très étudiée de façon théorique, mais les études expérimentales sont plus limitées, et surtout à des périodes de temps courtes.Dans une seconde partie, je me suis intéressée aux biais mutationnels. En effet, de précédentes études ont montré que les taux de mutation pouvaient varier au sein d'un même génome. Ainsi, certaines mutations peuvent se produire de façon plus fréquente que d'autres, le taux de mutation d'un nucléotide pouvant par exemple être influencé par les nucléotides avoisinants.Ces analyses ont été réalisées dans le contexte de l'expérience d'évolution à long terme initiée en 1988 par Richard Lenski (Michigan State University, USA). Douze populations ont été initiées à partir d'un ancêtre commun Escherichia coli et sont propagées depuis plus de 25 ans par repiquages quotidiens dans un milieu frais. Des échantillons ont été prélevés et le génome de clones évolués séquencé à différents temps, permettant une étude phénotypique et génomique des taux de mutations sur plus de 50 000 générations.J'ai ainsi pu mettre en évidence une dynamique importante des taux de mutation, avec l'émergence de génotypes hypermutateurs suivie de phénomènes de compensation multiples. D'autre part, j'ai pu observer des biais mutationnels importants dont l'impact des nucléotides avoisinant les mutations silencieuses dans les populations
Experimental and theoric dynamic of mutation rate
Les mutations constituent une des principales sources de variation sur lesquelles agit la sélection naturelle, permettant ainsi l'évolution des organismes vivants. Comprendre la dynamique d'accumulation des mutations, ainsi que les biais pouvant influer leur apparition, est donc indispensable pour mieux appréhender les processus évolutifs. Dans cette thèse, j'ai exploré ces deux aspects dans un contexte évolutif.Dans une première partie, je me suis intéressée à la dynamique des taux de mutation au cours du temps évolutif. En effet, les mutations pouvant être bénéfiques, neutres ou délétères, la dynamique des taux de mutation est régie par deux forces opposées que sont l'adaptabilité (la capacité à évoluer) et la stabilité du génome. Cette dynamique a été très étudiée de façon théorique, mais les études expérimentales sont plus limitées, et surtout à des périodes de temps courtes.Dans une seconde partie, je me suis intéressée aux biais mutationnels. En effet, de précédentes études ont montré que les taux de mutation pouvaient varier au sein d'un même génome. Ainsi, certaines mutations peuvent se produire de façon plus fréquente que d'autres, le taux de mutation d'un nucléotide pouvant par exemple être influencé par les nucléotides avoisinants.Ces analyses ont été réalisées dans le contexte de l'expérience d'évolution à long terme initiée en 1988 par Richard Lenski (Michigan State University, USA). Douze populations ont été initiées à partir d'un ancêtre commun Escherichia coli et sont propagées depuis plus de 25 ans par repiquages quotidiens dans un milieu frais. Des échantillons ont été prélevés et le génome de clones évolués séquencé à différents temps, permettant une étude phénotypique et génomique des taux de mutations sur plus de 50 000 générations.J'ai ainsi pu mettre en évidence une dynamique importante des taux de mutation, avec l'émergence de génotypes hypermutateurs suivie de phénomènes de compensation multiples. D'autre part, j'ai pu observer des biais mutationnels importants dont l'impact des nucléotides avoisinant les mutations silencieuses dans les populations.Mutations are the ultimate source of variation that allow living organisms to adapt through natural selection. Understanding the dynamics of mutation accumulation and how they are biased stands as a keystone to understand evolutionary processes. In this work, I explored these two aspects of mutation accumulation in an evolutionary framework.First, I studied the dynamics of mutation rates over evolutionary time. As mutations may be beneficial, neutral or deleterious, the dynamics of mutation rates will be a function of two opposite driving forces: evolvability or the ability to evolve and genome stability. The resulting dynamics has been widely studied theoretically but experimental studies are scarce and mostly limited to short periods of time.Second, I focused on mutational biases. Previous studies showed that mutation rates might vary within given genomes, as a function for example of both their localization and neighboring nucleotides.All studies from this Ph.D thesis were performed in the context of the long-term evolution experiment which has been started in 1988 by Richard Lenski (Michigan State University, USA). Twelve populations were initiated from a common ancestor strain of Escherichia coli and have been propagated ever since for more than 25 years by daily transfers in fresh medium. Samples were collected and genomes of evolved clones were sequenced at regular time point intervals, allowing both the phenotypic and genomic studies of the mutation rate for more than 50,000 generations.In this study, I showed that mutation rates are highly dynamic: the emergence of hypermutator genotypes is followed by multiple compensation events. I also observed large mutational biases, including the impact of the neighboring nucleotides on resulting aminoacid changes
all_mutations_k12_global_rank_new_ecoli_remove_ip_space.dat
Mutation effect prediction with the independent site mode
Data from: Mutator genomes decay, despite sustained fitness gains, in a long-term experiment with bacteria
Understanding the extreme variation among bacterial genomes remains an unsolved challenge in evolutionary biology, despite long-standing debate about the relative importance of natural selection, mutation, and random drift. A potentially important confounding factor is the variation in mutation rates between lineages and over evolutionary history, which has been documented in several species. Mutation accumulation experiments have shown that hypermutability can erode genomes over short timescales. These results, however, were obtained under conditions of extremely weak selection, casting doubt on their general relevance. Here, we circumvent this limitation by analyzing genomes from mutator populations that arose during a long-term experiment with Escherichia coli, in which populations have been adaptively evolving for >50,000 generations. We develop an analytical framework to quantify the relative contributions of mutation and selection in shaping genomic characteristics, and we validate it using genomes evolved under regimes of high mutation rates with weak selection (mutation accumulation experiments) and low mutation rates with strong selection (natural isolates). Our results show that, despite sustained adaptive evolution in the long-term experiment, the signature of selection is much weaker than that of mutational biases in mutator genomes. This finding suggests that relatively brief periods of hypermutability can play an outsized role in shaping extant bacterial genomes. Overall, these results highlight the importance of genomic draft, in which strong linkage limits the ability of selection to purge deleterious mutations. These insights are also relevant to other biological systems evolving under strong linkage and high mutation rates, including viruses and cancer cells
Mutator genomes decay, despite sustained fitness gains, in a long-term experiment with bacteria
International audienc