1,281 research outputs found

    Formation of Black Holes from Collapsed Cosmic String Loops

    Get PDF
    The fraction of cosmic string loops which collapse to form black holes is estimated using a set of realistic loops generated by loop fragmentation. The smallest radius sphere into which each cosmic string loop may fit is obtained by monitoring the loop through one period of oscillation. For a loop with invariant length LL which contracts to within a sphere of radius RR, the minimum mass-per-unit length μmin\mu_{\rm min} necessary for the cosmic string loop to form a black hole according to the hoop conjecture is μmin=R/(2GL)\mu_{\rm min} = R /(2 G L). Analyzing 25,57625,576 loops, we obtain the empirical estimate fBH=104.9±0.2(Gμ)4.1±0.1f_{\rm BH} = 10^{4.9\pm 0.2} (G\mu)^{4.1 \pm 0.1} for the fraction of cosmic string loops which collapse to form black holes as a function of the mass-per-unit length μ\mu in the range 103Gμ3×10210^{-3} \lesssim G\mu \lesssim 3 \times 10^{-2}. We use this power law to extrapolate to Gμ106G\mu \sim 10^{-6}, obtaining the fraction fBHf_{\rm BH} of physically interesting cosmic string loops which collapse to form black holes within one oscillation period of formation. Comparing this fraction with the observational bounds on a population of evaporating black holes, we obtain the limit Gμ3.1(±0.7)×106G\mu \le 3.1 (\pm 0.7) \times 10^{-6} on the cosmic string mass-per-unit-length. This limit is consistent with all other observational bounds.Comment: uuencoded, compressed postscript; 20 pages including 7 figure

    White-tailed deer (Odocoileus virginianus) positively affect the growth of mature northern red oak (Quercus rubra) trees

    Get PDF
    Understanding and predicting the effects of deer (Cervidae) on forest ecosystems present significant challenges in ecosystem ecology. Deer herbivory can cause large changes in the biomass and species composition of forest understory plant communities, including early life-cycle trees (i.e., seedlings and saplings). Such changes can impact juvenile to adult transitions and the future age structure and species composition of mature forests. Changes to understory vegetation also impact flow of energy and nutrients in forest ecosystems. Studies examining the influence of deer on mature trees, however, are rare and rely on extrapolating effects from early life cycle stages of trees. We tested the hypothesis that the absence of deer would result in an increase in the growth rate of mature trees by examining the impact of white-tailed deer (Odocoileus virginianus) on mature canopy trees. We examined incremental growth in individuals of Quercus rubra, an important component of temperate deciduous forests in North America, inside and outside 16-year deer exclosures in eastern U.S. deciduous forests. We found that adult trees inside exclosures grew less than those directly exposed to deer. Our findings highlight the indirect effects of white-tailed deer on the growth of adult individuals of Q. rubra in a way opposite of what would be expected from previous studies based on immature or understory tree populations. We suggest the increased growth of adult trees in the presence of deer may be explained by increased nutrient inputs through deer fecal and urine deposits and the alteration of the competitive environment belowground through the reduction of understory vegetation by browsing. Underscoring the ecological and demographic importance of adult trees in forest ecosystems, results from this study suggest the direct and indirect effects of deer on mature trees should not be overlooked

    How the perceived neighbourhood environment influences active living in older dwellers of an Asian ultra-dense metropolis

    Get PDF
    The way older adults perceive their neighbourhood environment may determine their levels of physical activity. We examined the associations of perceived neighbourhood environmental attributes with accelerometry-assessed and self-reported physical activity and sedentary time in Hong Kong Chinese older adults. In doing so, we estimated the inter-relationships among perceived environmental attributes, the mediating role of physical activity in the environment-sedentary time nexus and the moderating role of sex. We used data from the Active Lifestyle and the Environment in Chinese Seniors (ALECS) project collected on older adults (N = 909; ≥65 years) living in neighbourhoods varying in walkability and socio-economic status (71 % response rate). Self-reported physical activity and perceived neighbourhood attributes were assessed with validated questionnaires. Accelerometer-based physical activity and sedentary time were collected in 402 participants. Older adults who perceived their neighbourhood to be walkable, safe, aesthetically pleasing and equipped with public sitting facilities engaged in more physical activity and less sedentary time. Curvilinear relations of perceived residential density and activity-friendly urban design features indicated that extreme levels of density may not be optimal for older adults to adopt an active lifestyle because they do not provide sufficient space for sitting facilities and greenery and do not result in better perceptions of neighbourhood walkability when compared to areas with moderate-to-high levels of density. Creative solutions for the incorporation of greenery and public places for sitting in megacities are needed

    Enhanced TCR-induced Apoptosis in Interferon Regulatory Factor 4–deficient CD4+ Th Cells

    Get PDF
    Transcription factors of the interferon regulatory factor (IRF) family contribute to the regulation of cell proliferation and apoptosis. Here, we show that CD4+ T helper (Th) cells lacking IRF4 (IRF4−/−) are highly sensitive to apoptosis. After infection of IRF4−/− mice with the protozoan parasite Leishmania major, the lesion-draining lymph nodes developed the prototypic lymphadenopathy of wild-type mice after 4 wk, but demonstrated almost total loss of cellularity and enhanced apoptosis after 7 wk. In vitro, activation of IRF4−/− CD4+ Th cells led to greatly increased apoptosis compared with wild-type cells. Coculture of IRF4−/− and IRF4+/+ CD4+ cells did not increase survival of IRF4−/− CD4+ cells, indicating that the enhanced rate of IRF4−/− Th cell apoptosis was neither transferable nor due to lack of a cytokine. Enhanced CD4+ cell apoptosis was also observed after anti-CD95 mAb treatment, despite normal CD95 expression. Removal of endogenous cytokines, notably interleukin (IL)-4, led to increased and equally high levels of IRF4−/− and IRF4+/+ cell apoptosis, whereas the protective activity of exogenous IL-4 was reduced in IRF4−/− CD4+ cells despite normal expression of the IL-4 receptor. Therefore, IRF4 is central in protecting CD4+ cells against proapoptotic stimuli

    JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles.

    No full text
    International audienceJASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release

    JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles.

    Get PDF
    International audienceJASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release

    FASER: ForwArd Search ExpeRiment at the LHC

    Full text link
    FASER, the ForwArd Search ExpeRiment, is a proposed experiment dedicated to searching for light, extremely weakly-interacting particles at the LHC. Such particles may be produced in the LHC's high-energy collisions in large numbers in the far-forward region and then travel long distances through concrete and rock without interacting. They may then decay to visible particles in FASER, which is placed 480 m downstream of the ATLAS interaction point. In this work, we describe the FASER program. In its first stage, FASER is an extremely compact and inexpensive detector, sensitive to decays in a cylindrical region of radius R = 10 cm and length L = 1.5 m. FASER is planned to be constructed and installed in Long Shutdown 2 and will collect data during Run 3 of the 14 TeV LHC from 2021-23. If FASER is successful, FASER 2, a much larger successor with roughly R ~ 1 m and L ~ 5 m, could be constructed in Long Shutdown 3 and collect data during the HL-LHC era from 2026-35. FASER and FASER 2 have the potential to discover dark photons, dark Higgs bosons, heavy neutral leptons, axion-like particles, and many other long-lived particles, as well as provide new information about neutrinos, with potentially far-ranging implications for particle physics and cosmology. We describe the current status, anticipated challenges, and discovery prospects of the FASER program.Comment: 13 pages, 4 figures, submitted as Input to the European Particle Physics Strategy Update 2018-2020 and draws on FASER's Letter of Intent, Technical Proposal, and physics case documents (arXiv:1811.10243, arXiv:1812.09139, and arXiv:1811.12522

    Tropomyosin Tpm3.1 is required to maintain the structure and function of the axon initial segment

    Get PDF
    The axon initial segment (AIS) is the site of action potential initiation and serves as a cargo transport filter and diffusion barrier that helps maintain neuronal polarity. The AIS actin cytoskeleton comprises actin patches and periodic sub-membranous actin rings. We demonstrate that tropomyosin isoform Tpm3.1 co-localizes with actin patches and that the inhibition of Tpm3.1 led to a reduction in the density of actin patches. Furthermore, Tpm3.1 showed a periodic distribution similar to sub-membranous actin rings but Tpm3.1 was only partially congruent with sub-membranous actin rings. Nevertheless, the inhibition of Tpm3.1 affected the uniformity of the periodicity of actin rings. Furthermore, Tpm3.1 inhibition led to reduced accumulation of AIS structural and functional proteins, disruption in sorting somatodendritic and axonal proteins, and a reduction in firing frequency. These results show that Tpm3.1 is necessary for the structural and functional maintenance of the AIS.Peer reviewe

    Пути инновационного развития Автономной Республики Крым

    Get PDF
    Целью работы является изучение состояния и перспектив дальнейшего развития инновационной активности в Автономной Республике Крым
    corecore