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Abstract. Understanding and predicting the effects of deer (Cervidae) on forest ecosystems present

significant challenges in ecosystem ecology. Deer herbivory can cause large changes in the biomass and

species composition of forest understory plant communities, including early life-cycle trees (i.e., seedlings

and saplings). Such changes can impact juvenile to adult transitions and the future age structure and

species composition of mature forests. Changes to understory vegetation also impact flow of energy and

nutrients in forest ecosystems. Studies examining the influence of deer on mature trees, however, are rare

and rely on extrapolating effects from early life cycle stages of trees. We tested the hypothesis that the

absence of deer would result in an increase in the growth rate of mature trees by examining the impact of

white-tailed deer (Odocoileus virginianus) on mature canopy trees. We examined incremental growth in

individuals of Quercus rubra, an important component of temperate deciduous forests in North America,

inside and outside 16-year deer exclosures in eastern U.S. deciduous forests. We found that adult trees

inside exclosures grew less than those directly exposed to deer. Our findings highlight the indirect effects of

white-tailed deer on the growth of adult individuals of Q. rubra in a way opposite of what would be

expected from previous studies based on immature or understory tree populations. We suggest the

increased growth of adult trees in the presence of deer may be explained by increased nutrient inputs

through deer fecal and urine deposits and the alteration of the competitive environment belowground

through the reduction of understory vegetation by browsing. Underscoring the ecological and

demographic importance of adult trees in forest ecosystems, results from this study suggest the direct

and indirect effects of deer on mature trees should not be overlooked.
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INTRODUCTION

In recent years, deer (Cervidae) populations
have increased dramatically throughout many
areas of the world, including North America
(Horsley et al. 2003), Europe (Apollonio et al.
2010), Asia (Tsujino and Yumoto 2004, Suzuki et
al. 2008), and Oceania (Platt et al. 2004, Husheer
et al. 2006). Population increases have been
driven primarily by forest clearing (Dale 1997),
reduction of predator populations (Mladenoff et
al. 1999), and milder winter temperatures (Du-
mont et al. 2000). As deer populations have
grown, they have increasingly impacted the
biomass and species composition of understory
woody plant communities in forest ecosystems.
Many studies have shown that in forest ecosys-
tems, deer have contributed to the decreased
abundance and diversity of palatable herbs and
tree seedlings (Gill and Beardall 2001, Kuiters
and Slim 2002, McGraw and Furedi 2005, Knight
et al. 2009, Heckel et al. 2010). Naturally, changes
in tree seedling community can alter the future
structure of adult tree communities. However,
deer browsing activity also modifies the flow of
energy and nutrients in forest ecosystems (Hair-
ston et al. 1960, Pastor et al. 1993, McNeil and
Cushman 2005, Pastor et al. 2006, Stritar et al.
2010).

Deer alter energy and nutrient cycles in forest
ecosystems both directly and indirectly. Their
browsing activity can directly reduce the quan-
tity and quality of nitrogen (N)-rich litter inputs
to the soil (Ritchie et al. 1998, Horsley et al. 2003,
Rooney and Waller 2003), thereby modifying
carbon (C) allocation between aboveground and
belowground plant tissues (Bardgett and Wardle
2003). Changes in C allocation result in direct
changes to C fixation (Ceulemans and Isebrands
1996, Giardina et al. 2003) and indirect changes in
important belowground processes (Wardle et al.
2002, Persson et al. 2009) such as rates of
decomposition (Wardle et al. 2002) and N
mineralization (Ritchie et al. 1998, McNeil and
Cushman 2005). Decreases in belowground C
allocation tend to have an overall negative
influence on both the cycles and availability of
energy and nutrients (Epron et al. 2012). Exam-
ples where Cervidae populations have had
negative effects on energy and nutrient cycles
include moose (Alces alces) in boreal forests

(Persson et al. 2009), red deer (Cervus elaphus) in
temperate regions of Sweden (Månsson and
Jarnemo 2013), Sitka black-tailed deer (Odocoileus
hemionus) in coastal temperate rainforests (Vila et
al. 2003), and elk (Cervus canadensis) in willow
communities of the Rocky Mountain National
Park in western USA (Singer and Schoenecker
2003). Positive consequences of deer on primary
productivity and nutrient cycling are possible,
but are less common, particularly in browsing
systems (Pastor et al. 2006). Thus, through direct
and indirect feedbacks with plants and soil
microbial communities, deer can alter the pro-
ductivity and availability of mineral resources
necessary for the growth of trees and other
vegetation (Rooney and Waller 2003, Bressette et
al. 2012).

Despite the strong potential of deer herbivory
to impact forest ecosystems, direct tests examin-
ing consequences on mature forest trees have
rarely been conducted. The few studies on deer
herbivory that have included mature forests in
their analyses still rely on extrapolations from
trees in early life cycle stages. Examples consist of
herbivory impacts on seedlings and saplings that
affect the transition to a mature tree population
and thus affect the mature tree community over
time (Chouinard and Filion 2001, Potvin et al.
2003), and also direct injuries to sapling trees,
which are sometimes considered mature (Tanent-
zap et al. 2011). However, to obtain a complete
understanding of how deer herbivory impacts
the tree community, possible indirect effects must
also be considered.

Here we test whether the exclusion of deer
from a forest affects the growth of mature canopy
trees. Given potentially profound effects of deer
on the forest understory and the soil environ-
ment, which controls key biotic and abiotic forest
ecosystem processes (Wardle and Bardgett 2004),
we expected to see repercussions of deer not only
on early-stage trees, but also on mature canopy
trees. Because we expected N and C cycling to be
slower in the presence of deer (Ritchie et al. 1998,
McNeil and Cushman 2005), we hypothesized
that areas from which deer had been excluded
would have greater productivity, nutrient cycling
and consequently greater growth of mature trees
than in areas with deer. We measured the
incremental growth of adult individuals of
northern red oak (Quercus rubra) associated with
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a set of large, long-term white-tailed deer
(Odocoileus virginianus) exclusion plots in the
temperate deciduous forest of northern Virginia
(USA). The construction of deer exclusion fences
16 years prior to this study allowed the develop-
ment of a dense understory of woody and
herbaceous species inside the fenced areas that
differs greatly in species composition, height, and
density as well as in soil nutrient status from
control areas open to white-tailed deer grazing
(Heckel et al. 2010, Bressette et al. 2012).

METHODS

Study sites
This study was carried out at four sites in

large, continuous forest tracts located within 25
km of Front Royal, Virginia USA (388550 N, 788100

W, 200 m a.s.l.), in the Shenandoah National Park
(SNP; sites: Hilltop, Keyser, and Matthews Arm)
and at the Smithsonian Conservation Biology
Institute (SCBI; site: Posey). At each site, a long-
term 200 m 3 200 m (i.e., 4 ha) deer exclusion
treatment plot was paired with an equally sized
control treatment plot, 200–600 m away, with
free access by white-tailed deer (the only
expected large herbivore) and other large mam-
mals (e.g., American black bear [Ursus ameri-
canus]). Sites were initially selected based on
similar understory vegetation as quantified in
1990. Sites were separated by 4–21 km (Appen-
dix: Fig. A1). Deer exclusion plots were erected in
1990 using a combination of 1.5 m high mesh
farm fencing (grid size 25 cm 3 25 cm) on the
bottom and barbed wire above, creating a 2.4 m
high fence that excludes all large mammals but
allows smaller animals to circulate freely. Fences
have been maintained since their establishment
and while generally effective, all fences experi-
enced small breeches in integrity during the 16
years of the study.

The forest communities were composed pri-
marily of mature northern red oak (Quercus
rubra), hickory (Carya spp.), white ash (Fraxinus
Americana), yellow poplar (Liriodendron tulipifera),
and white oak (Q. alba), with understory shrubs
Cornus florida, Lindera benzoin, and Cercis cana-
densis. Meteorological data collected from 1960–
2009 at NOAA’s Woodstock, VA station (388540

N, 0788280 W, 201 m a.s.l., approximately 50 km
from our study sites), shows the mean annual

precipitation as 930 mm, mean annual summer
(Jun–Aug) temperature as 21.88C, and mean
annual winter (Dec–Feb) temperature as 0.38C.
Other environmental site characteristics are
included in Table 1.

Mature tree and sapling communities
To determine the species composition of the

mature tree communities within each plot, we
gathered tree data using the point-quarter
method (Krebs 1989). Briefly, we established five
parallel 200-m transects in each plot, placing
transects systematically at 20, 60, 100, 140, and
180 m from one side of each plot. A total of 50
points were sampled per plot, with points along
each transect separated by 20 m. At each of the 50
points, tree species identity and diameter at
breast height (dbh) were recorded. We included
all individuals with dbh .10 cm. Smaller
individuals, dbh �10 cm, were classified as
saplings and were not included in the analyses
of overstory tree communities (see Statistical
analyses below).

To describe the effects of deer on the woody
understory, we quantified the tree seedling and
sapling communities. We randomly located ten 5
m 3 5 m quadrats per plot. In each quadrat, we
recorded the number, height, and species identity
of all tree saplings �10 cm dbh. We treated the
tree seedlings and saplings as a single stratum in
the forest community and for clarity refer to them
collectively as saplings.

White-tailed deer abundance
We quantified relative site differences of

recent, local white-tailed deer activity using fecal
pellet abundance as an index of deer abundance.
Fecal pellet group counts (Campbell et al. 2004)
were conducted in either 10 (at the Keyser and
Matthews Arm sites) or 15 (at the Hilltop and
Posey sites) randomly located, circular sampling
areas of 5.64 m radius (100 m2) in each control
plot. Mean white-tailed deer density at the SCBI
in 2007 was 33 white-tailed deer km�2 (95% CI¼
19–56 white-tailed deer km�2) based on distance
sampling estimates (Thomas et al. 2010) con-
ducted by the staff at the SCBI (W. McShea,
personal communication). White-tailed deer densi-
ty in the SNP is considered to be similar (NPS
2009).
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Soil samples
As an index of soil nutrient availability, we

quantified total soil carbon (C) and nitrogen (N),
but not plant available N. Soil samples from 20
randomly chosen points per exclusion and
control plot were collected from the organic soil
layer (top 10 cm) using a 2.2-cm wide soil corer
during spring 2008. Samples were air dried and
combined into 10 composite samples for analysis
at the Utah State University Analytical Lab for
processing on a TruSpec C/N autoanalyzer
(LECO Corporation, St. Joseph, MO, USA). Data
are reported as percent by mass. Soil pH was
measured using a 3:1 (v/v) mixture on a
subsample from the 10 composite samples per
plot.

Dendroecology
To explore the effects of deer on mature tree

growth, we measured ring width increments
from tree cores in canopy individuals of Q. rubra
at the beginning of the growing season in 2008
(Posey, Keyser, and Matthews Arm) and 2009
(Hilltop). We choose Q. rubra because of its
ecological importance in the temperate decidu-
ous forests of eastern North America (McShea
and Healy 2002, MacDougall et al. 2010) and
because it is present as a dominant tree species
both inside and outside of all four exclusion sites
(Appendix: Table B1). In each plot, cores were
collected from 45 randomly chosen individuals
with dbh .10 cm. Tree cores were extracted at
breast height from the cross-slope sides of the
trunk using a 5-mm increment borer (Suunto;
Sylvan Lake, MI, USA). Some cores were
inadvertently broken during transport and pro-
cessing, resulting in a total sample of n ¼ 322

(Table 2). Cores were dried, mounted, and
planed with progressively finer sandpaper
(100–800 grit) until growth increments were
clearly visible (Speer 2010), and then scanned at
1200 dpi (Epson Expresso 1600; Long Beach, CA,
USA). Ring width measurements were made on
scanned images using WinDendro software
version 2008b (Regent Instruments Inc., Quebec,
Canada). Ring width boundaries were verified
using a dissecting microscope when necessary.

To estimate the total annual cross-sectional
area built by individuals over the duration of the
experiment, ring width increments were trans-
formed to basal area increments by assuming
circular tree trunks (Speer 2010). Basal areas (BA)
of all individuals were calculated using the dbh
recorded in 2008. From the 2008 dbh, annual ring
width increments were subtracted, allowing the
calculation of annual BAs from 1860 until 2008.
Total BA growth over the 16 consecutive years
before fence construction was compared to the 16
consecutive years after fence construction. De-
trending is a common technique in dendroecol-
ogy to remove long-term growth trends in
annual ring-width series data due to natural
aging (larger trees accumulate less width annu-
ally because of the greater stem volume), low-
frequency variation due to stand dynamics, and
climate (Speer 2010). We do not present de-
trended ring-width series because it is the growth
trends that we want to investigate, and detrend-
ing may obscure any treatment response. Addi-
tionally, including only the growth increments
for the 16 years before and after fence construc-
tion obviated the need for detrending (Speer
2010). To enable comparisons between individu-
als of different sizes and ages, relative BA growth

Table 1. Site characteristics of long-term deer exclusion sites and paired control sites open to deer in the

Shenandoah National Park and the Smithsonian Conservation Biology Institute in northern Virginia, USA.

Significant differences (a ¼ 0.05) between deer treatments at a given site highlighted by an asterisk.

Site Treatment Elevation (m) Aspect (degrees) Slope (%)

Soil pH Fecal groups ha�1

Mean SE Mean SE

Hilltop no deer 856 220 16 5.99* 0.14
deer 914 218 11 5.31* 0.10 3.4 1.1

Keyser no deer 858 141 13 4.58 0.14
deer 872 150 14 4.34 0.17 2.8 1.1

Matthews Arm no deer 792 325 6 5.94* 0.24
deer 829 18 21 5.43* 0.10 1.3 0.3

Posey no deer 311 257 10 5.47* 0.40
deer 317 269 11 4.88* 0.14 5.3 1.5
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values were calculated as follows. The percent-
age of total BA growth over the 16 years prior to
fence construction (1974–1989) of each individual
Q. rubra tree was calculated by dividing its BA
(in cm2) in 1989 by its BA (in cm2) in 1973 and
multiplying by 100. Percentage of total BA
growth over the 16 years following fence
construction (1991–2006) was calculated similar-
ly by dividing the total BA (in cm2) in 2006 of
each individual by its BA (in cm2) in 1990, the
year of fence construction, and multiplying by
100.

Additionally, to highlight annual differences in
BA between deer treatments at each site, a
second response variable, the mean annual BA
increase, was examined. This was computed by
dividing the BA (in cm2) of each individual in
year t by the BA (in cm2) of the same individual
in year t � 1. This standardization was done for
each of the 16 years before and after fence
construction.

Statistical analyses
To examine the effect of white-tailed deer

presence on the total growth of mature individ-
uals of Q. rubra over time, we compared the total
BA growth of the exclusion and control treat-
ments for the 16 years prior to fence construction
and, in a separate analysis, for the 16 years
following fence construction. The before and
after time periods were analyzed separately to
make clear the treatment response to deer
exclusion and to avoid confounding temporal
trends before and after fence construction. We
used a two-way ANOVA, treating site as a
random effect nested within treatment, with the

total BA growth of an individual 16-years as the
response variable followed by Tukey’s HSD test
to determine treatment differences among sites.
We used a similar ANOVA model to test for
differences between sapling densities, soil %N,
%C, C/N ratio and pH, the number of fecal pellet
groups, and tree dbh, height, and age. Response
variables did not violate assumption of normal-
ity.

For a closer examination of annual differences
in BA between deer treatments and the contri-
butions of site and year to the growth of mature
individuals of Q. rubra, we used a repeated
measures ANOVA, with the mean annual BA
increase as the response variable, again treating
site as a random effect nested within treatment.
We again carried out two separate analyses, one
examining the mean annual BA increase over the
16 years before the fences were erected, and the
other after. Our data violated the assumption of
sphericity associated with a repeated measures
analysis (i.e., the requirement that variances
between levels of treatment and time be equal
at each time point). Consequently, denominator
degrees of freedom were corrected using the
Greenhouse-Geisser epsilon (Greenhouse and
Geisser 1959). We also used a simple linear
regression to examine the temporal trend in
mean annual BA increase since fence construc-
tion, using years since fence construction as the
independent variable and mean annual BA
increase as the dependent variable; separate
analyses being carried out for trees exposed
and not exposed to deer. All analyses were done
using R (version 2.13.1) (R Development Core
Team 2011).

Table 2. Characteristics (means and standard errors) of mature (.10 cm dbh) Q. rubra trees including diameter at

breast height (dbh), tree height, age of individuals, and number of trees included at long-term deer exclusion

sites and paired control sites open to deer in northern Virginia. Significant differences (a¼ 0.05) between deer

treatments at a given site highlighted by an asterisk.

Site Treatment

dbh (cm) Height (m) Age (years)

nMean SE Mean SE Mean SE

Hilltop no deer 39 3 16 1 60 1 47
deer 49 4 20 1 51 2 38

Keyser no deer 48 2 22 1 77 5 35
deer 35 2 21 1 81 4 42

Matthews Arm no deer 49* 3 26 1 71 2 36
deer 25* 2 17 1 66 2 37

Posey no deer 44 4 23 1 74 3 47
deer 45 3 23 1 78 2 40
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RESULTS

Site comparisons
The mature tree community structure was

similar among the four sites and between deer
treatments, with no differences in total basal area
or overall tree density of all trees having a dbh
.10 cm (Appendix: Table B1). Although the
species composition of mature trees differed
somewhat among sites, Q. rubra was consistently
a dominant species, and its density in particular
did not differ among sites or between deer
treatments (Appendix: Table B1). Measurements
of mean dbh, height, and age of Q. rubra
populations were also not different between the
two deer treatments except at the Matthews Arm
site, where mean dbh was greater outside the
fence than inside (Table 2). Fecal pellet groups
outside fences indicated no significant differenc-
es in white-tailed deer abundance among the
four sites (Table 1).

Impact of deer exclusion
Deer exclusion impacted both soil characteris-

tics and understory vegetation somewhat differ-
ently among sites. Areas from which deer had
been excluded were characterized by significant-
ly lower total soil N and C at the Matthews Arm
and Hilltop sites, but there were no such
differences between deer treatments at the Key-
ser or Posey sites (Fig. 1A, B). At the Matthews
Arm site only, the C/N ratio was significantly
greater outside the exclosure fence (Fig. 1C).
Additionally, soil pH (Table 1) and the density
and height of tree saplings were all significantly
greater in areas without deer at all sites except
Keyser (Fig. 2).

Deer and growth of Q. rubra
Growth of adult Q. rubra individuals was

reduced in the absence of deer. We found a
significant main effect of deer treatment for the
16 years after fence construction (Fig. 3A).
Examining each site individually, there was
greater tree growth with deer at all sites but
Posey, where no differences were observed (Fig.
3B). This difference in tree growth between
fenced plots and those exposed to herbivory
contrasts with the 16 years before fence construc-
tion, when there was no pre-treatment difference
in growth for these same trees (Fig. 3A, B). When

mature tree growth following fence construction

was examined for differences over time using

repeated measures ANOVA, the presence or

absence of deer, site location, and year all

contributed significantly to the observed varia-

tion in the mean annual BA increase (Table 3).

The difference between treatments in growth

became more pronounced over the 16-years since

fence construction (Fig. 3C). This is highlighted

with a simple linear regression indicating the

slope of the mean annual BA increase over time

was negative in areas with no deer (slope ¼
�0.038; r2 ¼ 0.86; p , 0.001) but not different

from zero in areas with deer (p ¼ 0.821).

Fig. 1. Soil quality in 4-ha deer exclusion and control

areas at the Shenandoah National Park and Smithso-

nian Conservation Biology Institute. Means and

standard errors for (A) % N content by mass; (B) %

C content by mass; and (C) C/N ratio. Sites with

significant differences are highlighted with an asterisk.
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Tree growth appeared unresponsive to climate
variation at all sites, based on visual inspection of
the annual basal area incremental growth (BAI),
i.e., BA increase from year t to tþ 1, and its lack
of response to extremes in annual precipitation
and mean temperature (Appendix: Fig. C1).

DISCUSSION

Contrary to our initial hypothesis, this study
shows that deer can have strong positive effects
on the growth of adult individuals of Quercus
rubra within mature deciduous forests. The basal
area (BA) growth of mature Q. rubra trees was
greater in areas exposed to deer than in areas
from which deer and other large mammals had
been excluded for 16 years. Differences in total
BA growth or the mean annual BA increase did
not exist prior to deer exclusion, and the
magnitude of the growth differences continued

to increase over time. This finding suggests that
differences in BA growth after fence construction
were indeed due to the deer exclusion treatment,
rather than spatial heterogeneity or historical
artifacts. Should the differences in growth rate
continue, differences will develop in the total BA
of Q. rubra due to deer presence.

Positive effects of deer on trees contrast with
previous studies that have mainly focused on
forest understory and juvenile trees. Those
studies mainly show that herbivory by deer
and other large mammalian herbivores have
strong negative effects on plant growth, repro-
duction, survival, and terrestrial carbon storage
(Crête et al. 2001, Russell et al. 2001, Côté et al.
2004, Knight et al. 2009, MacDougall et al. 2010,
Tanentzap and Coomes 2012). Herbivory on
younger life cycle stage trees will eventually
influence the structure of the future mature forest
(Husheer et al. 2006, Long et al. 2007, Eschtruth

Fig. 2. Mean sapling (A) densities and (B) heights in 4-ha exclosures and control areas at the Shenandoah

National Park and Smithsonian Conservation Biology Institute after 16 years of deer exclusion. Saplings represent

all live individuals having a dbh �10 cm. Sites with significant differences are highlighted with an asterisk. Error

bars are standard errors.
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and Battles 2008), but our findings highlight
interactions between deer and the mature canopy
trees themselves.

Effects of deer on the growth of mature canopy
trees have rarely been reported. The few studies
showing impacts of deer on larger tree species
include in their definition of mature individuals
from young life stages or from smaller size
classes with which deer can interact directly
through browsing or other means. For example,
scrape scars were found on 45-year-old individ-
uals of Abies balsamea growing on Anticosti
Island, Quebec at heights 3–3.5 m above the
ground, presumably generated by white-tailed
deer during times of deep snow (Querrec and
Filion 2008). Also during the winter, red deer
(Cervus elaphus) strip bark from many tree species
but show a strong preference for 18–30 year old
individuals of Picea abies (Månsson and Jarnemo
2013). Other studies reporting deer effects on
mature trees defined mature trees as those being
above 1.4 m (Tanentzap et al. 2011) or 1.5 m in
height (Potvin et al. 2003). Consequently, the
negative effects of deer reported on mature trees
may have been manifested in smaller size classes.

We suggest two non-mutually exclusive expla-
nations for why deer positively affected the
growth of mature, canopy individuals of Q.
rubra. The first we refer to as the deer waste
mechanism. Deer can contribute substantial
nutrients to ecosystems through the deposition
of fecal and urine deposits (Christenson et al.
2010, Jensen et al. 2011). When deer consume
food rich in N, they excrete excess N in their
urine as urea, a form of N readily available to
plants (Mengel and Kirkby 2001, Pastor et al.
2006). In contrast, when deer consume food low
in N, they retain as much N as possible, and N
excretion is primarily in fecal material which may
mineralize even more slowly than soil organic
matter (Pastor et al. 1993, Pastor et al. 2006).
When deer waste deposits result in the concen-
tration of higher quality nutrients than autoch-
thonous pools, plant litter and soil organic

Fig. 3. Differences in the basal area (BA) growth of

mature individuals of Quercus rubra with and without

deer. (A) Total BA growth over the 16 year periods

before and after exclusion fence construction. BA

growth is expressed as the percent increase of an

individual tree at the beginning of the period.

Significant differences (a ¼ 0.05) indicated by an

asterisk. (B) Mean annual increase of BA at each site

over the 16 years before or after fence construction.

Significant differences between treatments at each site

are indicated by an asterisk. (C) Mean annual increase

of BA averaged over all sites for the 16 year period

following fence construction. Simple linear regression

 
(dashed lines) indicated the slope of the mean annual

BA increase over time was negative in areas with no

deer (slope ¼ �0.038; r2 ¼ 0.86; p , 0.001) but not

different from zero in areas with deer (p¼0.821). Error

bars are standard errors.
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matter, N cycling is positively affected (Ritchie et
al. 1998, Pastor et al. 2006), and consequently,
feeds back to positively affect plant growth
(LeBauer and Treseder 2008). In other words, it
is plausible that deer could positively affect plant
growth if the nutrient content of their fecal and
urine deposits is quantitatively greater than that
mineralized from the soil organic matter. Ampli-
fication of the N cycle has been observed on
Anticosti Island, Canada, where soil nitrification
in clear-cut sites with high deer density was
approximately 2.5 times greater than in areas
with low deer density (Dufresne et al. 2009). In
areas of high white-tailed deer use, nitrogenous
waste inputs have been measured as high as 13
kg N ha�1 yr�1 (Jensen et al. 2011). Thus, in areas
of high deer density, such as our sites, N inputs
from deer waste could be important components
of the ecosystem N budget and a strong control
on ecosystem productivity.

Support for the deer waste mechanism driving
the patterns of increased mature tree growth is
seen in soil data from our sites. Concentrations of
nitrate and phosphorus in forest soils at the
Hilltop and Keyser sites were higher in areas
with deer than those from which deer have been
excluded (Bressette et al. 2012). Decomposition of
soil organic matter was hypothesized to be
higher in areas with deer as well (Bressette et
al. 2012). If N inputs from deer have had a long-
term impact on decomposition and nutrient
availability, we would expect to see differences
in the total N and C pools of the organic soil. Our
findings of significantly greater soil %N and %C
in areas with deer at the Hilltop and Matthews
Arm sites are consistent with deer having long-
term impacts on decomposition and nutrient
availability. Significant elevations in soil %N and
%C in areas with deer have also been reported at

the Keyser site (Bressette et al. 2012). No such
differences in soil nutrient pools have been
observed at the Posey site and may explain
why there were no effects of deer on the growth
of mature trees at the Posey site. Furthermore,
soil pH provides a second line of support for the
deer waste mechanism. Soil pH was consistently
lower in areas with deer and is consistent with
increased N additions (Aber et al. 1998). Low
level N additions have been found to stimulate
decomposition by the soil microbial community
(Allison et al. 2009).

The second potential mechanism for enhanced
tree growth in the presence of deer is reduced
competition for belowground resources associat-
ed with the removal of understory vegetation
due to browsing. Belowground competition can
be intense (Casper and Jackson 1997, Bloor et al.
2008) and has been demonstrated for both
saplings and adult trees in other contexts (Bloor
et al. 2008, Montgomery et al. 2010). Because
understory vegetation represents an important
fraction of forest biomass (Knight et al. 2009,
Heckel et al. 2010) and is a substantial contrib-
utor to ecosystem transpiration (Yepez et al.
2003), competition for water and nutrients may
be important in structuring forest communities
and could be strongly influenced by deer
herbivory. Increased resource competition fol-
lowing reductions in deer population is suggest-
ed by a study involving muntjac deer (Muntiacus
reevesi ) in a copice woodland in England where
growth, survival, and recruitment of Corylus
avellana and Crataegus laevigata all significantly
decreased following a reduction in the deer
population (Tanentzap et al. 2012). In our study
system, understory biomass is much greater in
areas from which deer have been removed
(McShea and Rappole 2000, Heckel et al. 2010)

Table 3. Factors contributing to the variation in the annual basal area (BA) growth of Q. rubra over the 16 years

following the construction of the exclusion fences. Results are from a repeated measures ANOVA on the mean

annual BA increase. Site is treated as a random effect nested within deer exclusion treatment. Denominator

degrees of freedom are corrected using the Greenhouse-Giesser epsilon (0.3755) to account for sphericity.

Source df F P

Deer treatment 1, 2.3 70.4 0.01
Deer treatment(site) 6, 1886.3 56.1 ,0.001
Year 15, 1886.3 1.8 0.03
Deer treatment 3 Year 15, 1886.3 0.8 0.65
Deer treatment (site) 3 Year 90, 1886.3 0.8 0.86
Residuals 5024
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and represents a substantial nutrient sink against
which mature trees must compete to secure
needed resources. Differences in the understory
biomass are reflected in the sapling densities
which were significantly greater in areas from
which deer have been excluded at all sites except
the Keyser site. The lack of difference in sapling
density at the Keyser site is explained because at
the time of fence construction, the Keyser site had
a well-developed subcanopy. Saplings were
initially taller, and remain so, at Keyser than at
the other sites and many are tall enough to have
escaped herbivory pressure by inaccessibility
(Tripler et al. 2002). Additionally, shading pro-
vided by the taller saplings and canopy trees
may have limited establishment of new saplings
in this exclosure and thus explain the lower
sapling density at this site.

Conclusions
We have shown that deer indirectly affect the

growth of mature canopy trees of Q. rubra, in a
way that is contrary to that expected from
previous studies that have focused mainly on
smaller or younger tree populations. Growth
rates of mature trees affect the long-term popu-
lation dynamics of forests, particularly because
the reproductive success of long-lived organisms,
such as trees, relies most heavily on adult life
cycle stages (Franco and Silvertown 1996). The
next logical step is to investigate the generality of
the interactions between deer and mature canopy
trees of other species and to understand the
mechanisms driving the observed differences.
We suggest two potential mechanisms, enhanced
nitrogenous inputs from deer waste, or reduced
belowground competition due to deer herbivory
on the understory. More importantly, under-
standing the relative importance of these mech-
anisms could greatly increase our understanding
of forest dynamics and help us to understand
when deer may have positive or negative effects
on ecosystem productivity.
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SUPPLEMENTAL MATERIAL

APPENDIX A

Fig. A1. Map of Shenandoah National Park (sites: Hilltop, Keyser, and Matthews Arm) and Smithsonian

Conservation Biology Institute (site: Posey) study site locations.
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APPENDIX B

Table B1. Species composition of all trees with dbh .10 cm expressed as a proportion of the total basal area for

each site and treatment combination. There are no significant differences between deer and no-deer treatments

for total basal area or overall tree density. Units of total basal area and overall density are m2 ha�1 and

individuals ha�1, respectively.

Species

Hilltop Keyser Matthews Arm Posey

No deer Deer No deer Deer No deer Deer No deer Deer

Acer pensylvanicum 0.02 0.03 0.04 0.03 0.01 0.03 0 0
Acer rubrum 0.02 0.06 0.23 0.09 0.08 0.06 0.14 0.14
Acer saccharinum 0 0 0 0.04 0 0.06 0 0
Acer saccharum 0.02 0 0 0 0 0 0.05 0.07
Betua lutea 0.03 0.04 0.08 0.02 0.03 0.03 0.12 0
Caprinus caroliniana 0 0 0 0 0 0 0 0.02
Carya glabra 0.03 0.02 0 0.05 0.06 0.05 0 0.08
Carya ovata 0 0.09 0 0 0.07 0.03 0.03 0.07
Carya tomentosa 0.01 0.02 0 0.07 0.10 0.04 0 0
Carya sp. 0.03 0.01 0.05 0 0 0 0.04 0.12
Celtis occidentalis 0 0.01 0 0 0 0.04 0.01 0
Cornus florida 0 0 0 0 0 0.02 0 0
Diospyros virginiana 0.16 0 0 0 0 0.02 0 0
Fagus grandifolia 0.02 0.09 0.05 0 0 0 0.03 0.04
Fraxinus americana 0.13 0.12 0.15 0.04 0 0.07 0.06 0.13
Hamemelis verginiana 0 0.01 0 0.05 0 0 0 0
Liriodendron tulipifera 0.12 0.14 0 0 0 0.01 0.10 0.13
Ostrya virginiana 0 0 0 0 0 0 0.01 0
Prunus serotina 0 0.07 0 0.08 0.02 0.01 0 0
Quercus alba 0.09 0.18 0.11 0.20 0.14 0.29 0.08 0
Quercus palustris 0.03 0 0 0 0 0 0 0
Quercus prinus 0 0 0 0.12 0 0.02 0.09 0
Quercus rubra 0.17 0.10 0.25 0.14 0.37 0.15 0.10 0.10
Quercus velutina 0.12 0 0 0 0 0 0.09 0
Robina pseudoacacia 0 0 0 0 0.01 0 0 0
Tilia americana 0 0 0 0 0.01 0 0 0
Ulnus americana 0 0.04 0.05 0 0 0 0.06 0.11
Unknown 0 0 0 0 0 0.04 0 0
Total basal area (SE) 3.17

(0.70)
2.63
(0.76)

1.63
(0.29)

1.59
(0.35)

2.86
(0.49)

1.86
(0.07)

4.15
(0.37)

4.33
(0.88)

Overall density (SE) 449
(83)

559
(153)

466
(70)

529
(26)

538
(72)

710
(83)

343
(15)

290
(51)
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APPENDIX C

Fig. C1. Mean annual basal area increment (BAI) growth (raw) and standard deviations of adult Q. rubra trees

growing in the canopy at four sites in Virginia (A–D) that have excluded deer herbivory since 1990 (onset of

herbivory exclusion indicated with dotted vertical line) and paired controls that have allowed open access to deer

continuously. Error bars are often smaller than the symbol. Exclusion plots and control plots were 4 ha in size. (E)

Climate record summarizing total annual precipitation (bars) and mean annual temperature (line) from 1970 to

2009 for NOAA’s Woodstock, VA site, about 50 km from study sites.
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