287 research outputs found

    Therapeutic Potential of Mesenchymal Stem Cells for Cancer Therapy

    Get PDF
    Mesenchymal stem cells (MSCs) are among the most frequently used cell type for regenerative medicine. A large number of studies have shown the beneficial effects of MSC-based therapies to treat different pathologies, including neurological disorders, cardiac ischemia, diabetes, and bone and cartilage diseases. However, the therapeutic potential of MSCs in cancer is still controversial. While some studies indicate that MSCs may contribute to cancer pathogenesis, emerging data reported the suppressive effects of MSCs on cancer cells. Because of this reality, a sustained effort to understand when MSCs promote or suppress tumor development is needed before planning a MSC-based therapy for cancer. Herein, we provide an overview on the therapeutic application of MSCs for regenerative medicine and the processes that orchestrates tissue repair, with a special emphasis placed on cancer, including central nervous system tumors. Furthermore, we will discuss the current evidence regarding the double-edged sword of MSCs in oncological treatment and the latest advances in MSC-based anti-cancer agent delivery systems.Junta de Andalucía PI-0272-2017Ministerio de Ciencia, Innovación y Universdad CD16/00118, CP19/00046, PI16/00259, BFU2017-83588-P, CP14/00105, PI18/01590, PI17/02104, PIC18/0010, IC19/0052Juvenile Diabetes Research Foundation (USA) 2-SRA-2019-837-S-BFundación Española para la Ciencia y la Tecnología 2018-00023

    Frame transformation and geoid undulation transfer to GNSS real time positions through the new RTCM 3.1 transformation messages

    Full text link
    Radio Technical Commission for Marine Services (RTCM) standardised messages play an important role in real time Global Navigation Satellite Systems (GNSS) applications such as navigation, positioning, civil engineering, surveying, and cartographic or cadastral production. One of the latest agreements on RTCM definitions contains the data fields for real time geodetic reference frame transformation and orthometric heights computation by received geoid undulations via internet protocol. These parameters can be generated dynamically by a GNSS data centre in a network of reference stations, encapsulated in RTCM messages and broadcasted to the rover location so they are centrally administered and the same frame transformations and geoid model are available to every user in the field, obtaining results in a local reference frame in real time. This paper summarises the functionality of the new RTCM 3?1 transformation messages, describes limitations and provides ideas about the possible use for solving specific problems. Test field campaigns are used to describe the real performance and usefulness of these new RTCM 3?1 messagesCapilla Roma, R.; Martín Furones, ÁE.; Anquela Julián, AB.; Berné Valero, JL. (2012). Frame transformation and geoid undulation transfer to GNSS real time positions through the new RTCM 3.1 transformation messages. Survey Review. 44(324):30-36. doi:10.1179/1752270611Y.0000000010S303644324Benciolini, B., Biagi, L., Crespi, M., Manzino, A. M., & Roggero, M. (2008). Reference frames for GNSS positioning services: Some problems and proposed solutions. Journal of Applied Geodesy, 2(1). doi:10.1515/jag.2008.006González-Matesanz, J., Dalda, A., & Malpica, J. A. (2006). A RANGE OF ED50-ETRS89 DATUM TRANSFORMATION MODELS TESTED ON THE SPANISH GEODETIC NETWORK. Survey Review, 38(302), 654-667. doi:10.1179/sre.2006.38.302.654Soler, T., & Marshall, J. (2003). A note on frame transformations with applications to geodetic datums. GPS Solutions, 7(2), 148-149. doi:10.1007/s10291-003-0063-

    No-core shell model for 48-Ca, 48-Sc and 48-Ti

    Full text link
    We report the first no-core shell model results for 48Ca^{48}Ca, 48Sc^{48}Sc and 48Ti^{48}Ti with derived and modified two-body Hamiltonians. We use an oscillator basis with a limited Ω\hbar\Omega range around 45/A1/325/A2/3=10.5MeV45/A^{1/3}-25/A^{2/3} = 10.5 MeV and a limited model space up to 1Ω1\hbar\Omega. No single-particle energies are used. We find that the charge dependence of the bulk binding energy of eight A=48 nuclei is reasonably described with an effective Hamiltonian derived from the CD-Bonn interaction while there is an overall underbinding by about 0.4 MeV/nucleon. However, the resulting spectra exhibit deficiencies that are anticipated due to: (1) basis space limitations and/or the absence of effective many-body interactions; and, (2) the absence of genuine three-nucleon interactions. We then introduce additive isospin-dependent central terms plus a tensor force to our Hamiltonian and achieve accurate binding energies and reasonable spectra for all three nuclei. The resulting no-core shell model opens a path for applications to the double-beta (ββ\beta\beta) decay process.Comment: Revised content and added reference

    Artificial neural network approach for forecasting nitrogen oxides concentrations

    Full text link
    This paper presents the application of feed-forward multilayer perceptron networks to forecast hourly nitrogen oxides levels 24 hours in advance. Input data were meteorological variables, average hourly traffic and nitrogen oxides hourly levels. The introduction of four periodic components (sine and cosine terms for the daily and weekly cycles) was analyzed in order to improve the models prediction power. The data were measured during three years at monitoring stations in Valencia (Spain) in two locations with high traffic density. The models evaluation criteria were the mean absolute error, the root mean square error, the mean absolute percentage error, and the correlation coefficient between observations and predictions. Comparisons of multilayer perceptron-based models proved that the insertion of the four additional seasonal input variables improved the ability of obtaining more accurate predictions, which emphasizes the importance of taking into account the seasonal character of nitrogen oxides. When using seasonal components as predictors, the root mean square error (RMSE) improves from 20.29 to 19.35 when predicting nitrogen dioxide, and from 45.07 to 42.37 when forecasting nitric oxides if the model includes seasonal components At one study location. At the other location the RMSE changes from 23.76 to 23.05 when predicting nitrogen dioxide and from 33.94 to 33.10 for the other pollutant s forecasts. Neural networks did not require very exhaustive information about air pollutants, reaction mechanisms, meteorological parameters or traffic characteristics, and they had the ability of allowing nonlinear and complex relationships between very different predictor variables in an urban environment.Capilla Roma, CA. (2015). Artificial neural network approach for forecasting nitrogen oxides concentrations. Environmental Engineering Science. 32(9):781-788. doi:10.1089/ees.2014.0556S78178832

    On opportunistic software reuse

    Get PDF
    The availability of open source assets for almost all imaginable domains has led the software industry toopportunistic design-an approach in which people develop new software systems in an ad hoc fashion by reusing and combining components that were not designed to be used together. In this paper we investigate this emerging approach. We demonstrate the approach with an industrial example in whichNode.jsmodules and various subsystems are used in an opportunistic way. Furthermore, to study opportunistic reuse as a phenomenon, we present the results of three contextual interviews and a survey with reuse practitioners to understand to what extent opportunistic reuse offers improvements over traditional systematic reuse approaches.Peer reviewe

    Mössbauer thermal scan study of a spin crossover system

    Get PDF
    Programmable Velocity equipment was used to perform a Mössbauer Thermal Scans to allow a quasi-continuous temperature study of the magnetic transition between the low-spin and a high-spin configurations in [Fe(Htrz)2(trz)](BF4) system. The material was studied both in bulk as in nanoparticles sample forms.Facultad de Ciencias ExactasInstituto de Física La PlataInstituto de Investigaciones Fisicoquímicas Teóricas y Aplicada

    SARS-CoV-2 Seroprevalence Study in Pediatric Patients and Health Care Workers Using Multiplex Antibody Immunoassays

    Full text link
    SARS-CoV-2 infection has become a global health problem specially exacerbated with the continuous appearance of new variants. Healthcare workers (HCW) have been one of the most affected sectors. Children have also been affected, and although infection generally presents as a mild disease, some have developed the Pediatric Inflammatory Multisystem Syndrome Temporally Associated with SARS-CoV-2 (PIMS-TS). We recruited 190 adults (HCW and cohabitants, April to June 2020) and 57 children (April 2020 to September 2021), of whom 12 developed PIMS-TS, in a hospital-based study in Spain. Using an in-house Luminex assay previously validated, antibody levels were measured against different spike and nucleocapsid SARS-CoV-2 proteins, including the receptor-binding domain (RBD) of the Alpha, Beta, Gamma, and Delta variants of concern (VoC). Seropositivity rates obtained from children and adults, respectively, were: 49.1% and 11% for IgG, 45.6% and 5.8% for IgA, and 35.1% and 7.3% for IgM. Higher antibody levels were detected in children who developed PIMS-TS compared to those who did not. Using the COVID-19 IgM/IgA ELISA (Vircell, S.L.) kit, widely implemented in Spanish hospitals, a high number of false positives and lower seroprevalences compared with the Luminex estimates were found, indicating a significantly lower specificity and sensitivity. Comparison of antibody levels against RBD-Wuhan versus RBD-VoCs indicated that the strongest positive correlations for all three isotypes were with RBD-Alpha, while the lowest correlations were with RBD-Delta for IgG, RBD-Gamma for IgM, and RBD-Beta for IgA. This study highlights the differences in antibody levels between groups with different demographic and clinical characteristics, as well as reporting the IgG, IgM, and IgA response to RBD VoC circulating at the study period

    The beta-beta two neutrino decay in 48Ca

    Get PDF
    A schematic study of the ββ2ν\beta \beta 2\nu -decay of 48Ca^{48}Ca is made in a shell-model approach. The emphasis is especially put on the role of the spin-orbit potential in relation with the contribution of other terms in the strong interaction. This is discussed with a particular attention to the behavior of these ones under the SU(4) symmetry. Different methods in calculating the transition amplitude are also looked at with the aim to determine their reliability and, eventually, why they don't work. Further aspects relative to the failure of the Operator Expansion Method to reproduce the results of more elaborate calculations are examined.Comment: 24 pages, 5 figure

    Oral particle uptake and organ targeting drives the activity of amphotericin B nanoparticles

    Get PDF
    There are very few drug delivery systems that target key organs via the oral route, as oral delivery advances normally address gastrointestinal drug dissolution, permeation, and stability. Here we introduce a nanomedicine in which nanoparticles, while also protecting the drug from gastric degradation, are taken up by the gastrointestinal epithelia and transported to the lung, liver, and spleen, thus selectively enhancing drug bioavailability in these target organs and diminishing kidney exposure (relevant to nephrotoxic drugs). Our work demonstrates, for the first time, that oral particle uptake and translocation to specific organs may be used to achieve a beneficial therapeutic response. We have illustrated this using amphotericin B, a nephrotoxic drug encapsulated within <i>N</i>-palmitoyl-<i>N</i>-methyl-<i>N</i>,<i>N</i>-dimethyl-<i>N</i>,<i>N</i>,<i>N</i>-trimethyl-6-<i>O</i>-glycol chitosan (GCPQ) nanoparticles, and have evidenced our approach in three separate disease states (visceral leishmaniasis, candidiasis, and aspergillosis) using industry standard models of the disease in small animals. The oral bioavailability of AmB-GCPQ nanoparticles is 24%. In all disease models, AmB-GCPQ nanoparticles show comparable efficacy to parenteral liposomal AmB (AmBisome). Our work thus paves the way for others to use nanoparticles to achieve a specific targeted delivery of drug to key organs via the oral route. This is especially important for drugs with a narrow therapeutic index
    corecore