512 research outputs found

    Rigid Origami Vertices: Conditions and Forcing Sets

    Full text link
    We develop an intrinsic necessary and sufficient condition for single-vertex origami crease patterns to be able to fold rigidly. We classify such patterns in the case where the creases are pre-assigned to be mountains and valleys as well as in the unassigned case. We also illustrate the utility of this result by applying it to the new concept of minimal forcing sets for rigid origami models, which are the smallest collection of creases that, when folded, will force all the other creases to fold in a prescribed way

    Feasibility of chest ultrasound up to 42 m underwater

    Get PDF
    After recent advancements, ultrasound has extended its applications from bedside clinical practice to wilderness medicine. Performing ultrasound scans in extreme environments can allow direct visualization of unique pathophysiological adaptations but can be technically challenging. This paper summarizes how a portable ultrasound apparatus was marinized to let scientific divers and sonographers perform ultrasound scans of the lungs underwater up to − 42 m. A metallic case protected the ultrasound apparatus inside; a frontal transparent panel with a glove allowed visualization and operation of the ultrasound by the diving sonographer. The inner pressure was equalized with environmental pressure through a compressed air tank connected with circuits similar to those used in SCUBA diving. Finally, the ultrasound probe exited the metallic case through a sealed aperture. No technical issues were reported after the first testing step and the real experiments

    Sensitivity analysis of the variable demand probit stochastic user equilibrium with multiple user classes

    Get PDF
    This paper presents a formulation of the multiple user class, variable demand, probit stochastic user equilibrium model. Sufficient conditions are stated for differentiability of the equilibrium flows of this model. This justifies the derivation of sensitivity expressions for the equilibrium flows, which are presented in a format that can be implemented in commercially available software. A numerical example verifies the sensitivity expressions, and that this formulation is applicable to large networks

    Solution-processed p-type copper(I) thiocyanate (CuSCN) for low-voltage flexible thin-film transistors and integrated inverter circuits

    Get PDF
    We report on low operating voltage thin-film transistors (TFTs) and integrated inverters based on copper(I) thiocyanate (CuSCN) layers processed from solution at low temperature on freestanding plastic foils. As-fabricated coplanar bottom-gate and staggered top-gate TFTs exhibit hole-transporting characteristics with average mobility values of 0.0016 cm2 V1 s 1 and 0.013 cm2 V1 s 1 , respectively, current on/off ratio in the range 102 –104 , and maximum operating voltages between 3.5 and 10 V, depending on the gate dielectric employed. The promising TFT characteristics enable fabrication of unipolar NOT gates on flexible free-standing plastic substrates with voltage gain of 3.4 at voltages as low as 3.5 V. Importantly, discrete CuSCN transistors and integrated logic inverters remain fully functional even when mechanically bent to a tensile radius of 4 mm, demonstrating the potential of the technology for flexible electronics

    Optimal shapes of compact strings

    Full text link
    Optimal geometrical arrangements, such as the stacking of atoms, are of relevance in diverse disciplines. A classic problem is the determination of the optimal arrangement of spheres in three dimensions in order to achieve the highest packing fraction; only recently has it been proved that the answer for infinite systems is a face-centred-cubic lattice. This simply stated problem has had a profound impact in many areas, ranging from the crystallization and melting of atomic systems, to optimal packing of objects and subdivision of space. Here we study an analogous problem--that of determining the optimal shapes of closely packed compact strings. This problem is a mathematical idealization of situations commonly encountered in biology, chemistry and physics, involving the optimal structure of folded polymeric chains. We find that, in cases where boundary effects are not dominant, helices with a particular pitch-radius ratio are selected. Interestingly, the same geometry is observed in helices in naturally-occurring proteins.Comment: 8 pages, 3 composite ps figure

    Applications of sensitivity analysis for probit stochastic network equilibrium

    Get PDF
    Network equilibrium models are widely used by traffic practitioners to aid them in making decisions concerning the operation and management of traffic networks. The common practice is to test a prescribed range of hypothetical changes or policy measures through adjustments to the input data, namely the trip demands, the arc performance (travel time) functions, and policy variables such as tolls or signal timings. Relatively little use is, however, made of the full implicit relationship between model inputs and outputs inherent in these models. By exploiting the representation of such models as an equivalent optimisation problem, classical results on the sensitivity analysis of non-linear programs may be applied, to produce linear relationships between input data perturbations and model outputs. We specifically focus on recent results relating to the probit Stochastic User Equilibrium (PSUE) model, which has the advantage of greater behavioural realism and flexibility relative to the conventional Wardrop user equilibrium and logit SUE models. The paper goes on to explore four applications of these sensitivity expressions in gaining insight into the operation of road traffic networks. These applications are namely: identification of sensitive, ‘critical’ parameters; computation of approximate, re-equilibrated solutions following a change (post-optimisation); robustness analysis of model forecasts to input data errors, in the form of confidence interval estimation; and the solution of problems of the bi-level, optimal network design variety. Finally, numerical experiments applying these methods are reported
    corecore